Topological Distances Between Brain Networks

被引:16
|
作者
Chung, Moo K. [1 ]
Lee, Hyekyoung [2 ]
Solo, Victor [3 ]
Davidson, Richard J. [1 ]
Pollak, Seth D. [1 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] Seoul Natl Univ, Seoul, South Korea
[3] Univ New South Wales, Sydney, NSW, Australia
来源
CONNECTOMICS IN NEUROIMAGING | 2017年 / 10511卷
基金
新加坡国家研究基金会;
关键词
HOMOLOGY;
D O I
10.1007/978-3-319-67159-8_19
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Many existing brain network distances are based on matrix norms. The element-wise differences may fail to capture underlying topological differences. Further, matrix norms are sensitive to outliers. A few extreme edge weights may severely affect the distance. Thus it is necessary to develop network distances that recognize topology. In this paper, we introduce Gromov-Hausdorff (GH) and Kolmogorov-Smirnov (KS) distances. GH-distance is often used in persistent homology based brain network models. The superior performance of KS-distance is contrasted against matrix norms and GH-distance in random network simulations with the ground truths. The KS-distance is then applied in characterizing the multimodal MRI and DTI study of maltreated children.
引用
收藏
页码:161 / 170
页数:10
相关论文
共 50 条
  • [21] Complex brain networks:: From topological communities to clustered dynamics
    Zemanova, Lucia
    Zamora-Lopez, Gorka
    Zhou, Changsong
    Kurths, Juergen
    PRAMANA-JOURNAL OF PHYSICS, 2008, 70 (06): : 1087 - 1097
  • [22] Kernel based statistic: identifying topological differences in brain networks
    Ma, Kai
    Shao, Wei
    Zhu, Qi
    Zhang, Daoqiang
    INTELLIGENT MEDICINE, 2022, 2 (01): : 30 - 40
  • [23] Complex brain networks: From topological communities to clustered dynamics
    Lucia Zemanová
    Gorka Zamora-López
    Changsong Zhou
    Jürgen Kurths
    Pramana, 2008, 70 : 1087 - 1097
  • [24] On the Topological Changes of Brain Functional Networks under Priming and Ambiguity
    Leibnitzt, Kenji
    Shimokawa, Tetsuya
    Ihara, Aya
    Fujimaki, Norio
    Peper, Ferdinand
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2013, E96B (11) : 2741 - 2748
  • [25] Stacked Topological Preserving Dynamic Brain Networks Representation and Classification
    Zhu, Qi
    Xu, Ruting
    Wang, Ran
    Xu, Xijia
    Zhang, Zhiqiang
    Zhang, Daoqiang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (11) : 3473 - 3484
  • [26] Identifying Topological Motif Patterns of Human Brain Functional Networks
    Wei, Yongbin
    Liao, Xuhong
    Yan, Chaogan
    He, Yong
    Xia, Mingrui
    HUMAN BRAIN MAPPING, 2017, 38 (05) : 2734 - 2750
  • [27] Emotion-Induced Topological Changes in Functional Brain Networks
    Park, Chang-hyun
    Lee, Hae-Kook
    Kweon, Yong-Sil
    Lee, Chung Tai
    Kim, Ki-Tae
    Kim, Young-Joo
    Lee, Kyoung-Uk
    BRAIN TOPOGRAPHY, 2016, 29 (01) : 108 - 117
  • [28] DYNAMIC TOPOLOGICAL DATA ANALYSIS OF FUNCTIONAL HUMAN BRAIN NETWORKS
    Chung, Moo k.
    Das, Soumya
    Ombao, Hernando
    FOUNDATIONS OF DATA SCIENCE, 2024, 6 (01): : 22 - 40
  • [29] Emotion-Induced Topological Changes in Functional Brain Networks
    Chang-hyun Park
    Hae-Kook Lee
    Yong-Sil Kweon
    Chung Tai Lee
    Ki-Tae Kim
    Young-Joo Kim
    Kyoung-Uk Lee
    Brain Topography, 2016, 29 : 108 - 117
  • [30] Topological gene expression networks recapitulate brain anatomy and function
    Patania, Alice
    Selvaggi, Pierluigi
    Veronese, Mattia
    Dipasquale, Ottavia
    Expert, Paul
    Petri, Giovanni
    NETWORK NEUROSCIENCE, 2019, 3 (03): : 744 - 762