Photoresponse and Field Effect Transport Studies in InAsP-InP Core-Shell Nanowires

被引:3
|
作者
Lee, Rochelle [1 ]
Jo, Min Hyeok [1 ]
Kim, TaeWan [2 ]
Kim, Hyo Jin [3 ]
Kim, Doo Gun [3 ]
Shin, Jae Cheol [1 ]
机构
[1] Yeungnam Univ, Dept Phys, Gyongsan 712749, South Korea
[2] KRISS, Adv Instrumentat Inst, Daejeon 34113, South Korea
[3] Korea Photon Technol Inst KOPTI, Gwangju 61007, South Korea
基金
新加坡国家研究基金会;
关键词
InAsP; III-V semiconductor; Nanowires; Passivation; Core-shell structure; ELECTRICAL-PROPERTIES; GROWTH;
D O I
10.1007/s13391-018-0041-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A ternary InAsyP1-y alloy is suitable for an application to near-infrared (NIR) optical devices as their direct bandgap energy covers the entire NIR band. A nanowire (NW) system allows an epitaxial integration of InAsyP1-y alloy on any type of substrate since the lattice mismatch strain can be relieved through the NW sidewall. Nevertheless, the very large surface to volume ratio feature of the NWs leads to enormous surface states which are susceptible to surface recombination of free carriers. Here, ternary InAs0.75P0.25 NWs are grown with InP passivation layer (i.e., core-shell structure) to minimize the influence of the surface states, thus increasing their optical and electrical properties. A photoresponse study was achieved through the modeled band structure of the grown NWs. The model and experimental results suggest that 5-nm-thick InP shell efficiently passivates the surface states of the InAs0.75P0.25 NWs. The fabricated core-shell photodetectors and field-effect transistors exhibit improved photoresponse and transport properties compared to its counterpart core-only structure.
引用
收藏
页码:357 / 362
页数:6
相关论文
共 50 条
  • [31] Photovoltaics with Piezoelectric Core-Shell Nanowires
    Boxberg, Fredrik
    Sondergaard, Niels
    Xu, H. Q.
    [J]. NANO LETTERS, 2010, 10 (04) : 1108 - 1112
  • [32] Strain in crystalline core-shell nanowires
    Ferrand, David
    Cibert, Joel
    [J]. EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2014, 67 (03):
  • [33] Strain in semiconductor core-shell nanowires
    Gronqvist, Johan
    Sondergaard, Niels
    Boxberg, Fredrik
    Guhr, Thomas
    Aberg, Sven
    Xu, H. Q.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 106 (05)
  • [34] Photovoltaics with piezoelectric core-shell nanowires
    Boxberg, Fredrik
    Sondergard, Niels
    Xu, H. Q.
    Wallentin, Jesper
    Jin, Aizi
    Trygg, Erik
    Borgstrom, Magnus
    [J]. PHYSICS OF SEMICONDUCTORS: 30TH INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, 2011, 1399
  • [35] Morphology of Epitaxial Core-Shell Nanowires
    Wang, Hailong
    Upmanyu, Moneesh
    Ciobanu, Cristian V.
    [J]. NANO LETTERS, 2008, 8 (12) : 4305 - 4311
  • [36] Doping of SiGe core-shell nanowires
    Amato, Michele
    Rurali, Riccardo
    Ossicini, Stefano
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2012, 11 (03) : 272 - 279
  • [37] Core-shell homoepitaxial silicon nanowires
    Adachi, M. M.
    Karim, K. S.
    [J]. CHEMICAL PHYSICS LETTERS, 2013, 583 : 141 - 145
  • [38] Doping of SiGe core-shell nanowires
    Michele Amato
    Riccardo Rurali
    Stefano Ossicini
    [J]. Journal of Computational Electronics, 2012, 11 : 272 - 279
  • [39] Piezoelectric field enhancement in III-V core-shell nanowires
    Al-Zahrani, Hanan Y. S.
    Pal, Joydeep
    Migliorato, Max A.
    Tse, Geoffrey
    Yu, Dapeng
    [J]. NANO ENERGY, 2015, 14 : 382 - 391
  • [40] Growth control, structure, chemical state, and photoresponse of CuO-CdS core-shell heterostructure nanowires
    El Mel, A. A.
    Buffiere, M.
    Bouts, N.
    Gautron, E.
    Tessier, P. Y.
    Henzler, K.
    Guttmann, P.
    Konstantinidis, S.
    Bittencourt, C.
    Snyders, R.
    [J]. NANOTECHNOLOGY, 2013, 24 (26)