On the Yang-Baxter equation and left nilpotent left braces

被引:27
|
作者
Cedo, Ferran [1 ]
Gateva-Ivanova, Tatiana [2 ,3 ]
Smoktunowicz, Agata [4 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] Amer Univ Bulgaria, Blagoevgrad 2700, Bulgaria
[3] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[4] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3JZ, Midlothian, Scotland
关键词
SEMIGROUPS;
D O I
10.1016/j.jpaa.2016.07.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study non-degenerate involutive set-theoretic solutions (X, r) of the Yang-Baxter equation, we call them solutions. We prove that the structure group G(X, r) of a finite non-trivial solution (X, r) cannot be an Engel group. It is known that the structure group G(X, r) of a finite multipermutation solution (X, r) is a poly-Z group, thus our result gives a rich source of examples of braided groups and left braces G(X, r) which are poly-Z groups but not Engel groups. We find an explicit relation between the multipermutation level of a left brace and the length of the radical chain A((n+1)) = A((n)) * A introduced by Rump. We also show that a finite solution of the Yang-Baxter equation can be embedded in a convenient way into a finite left brace, or equivalently into a finite involutive braided group. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:751 / 756
页数:6
相关论文
共 50 条
  • [1] Skew left braces and the Yang-Baxter equation
    Childs, Lindsay N.
    NEW YORK JOURNAL OF MATHEMATICS, 2024, 30 : 649 - 655
  • [2] LEFT BRACES AND THE QUANTUM YANG-BAXTER EQUATION
    Meng, H.
    Ballester-Bolinches, A.
    Esteban-Romero, R.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (02) : 595 - 608
  • [3] Left Braces: Solutions of the Yang-Baxter Equation
    Cedo, Ferran
    ADVANCES IN GROUP THEORY AND APPLICATIONS, 2018, 5 : 33 - 90
  • [4] Rota-Baxter groups, skew left braces, and the Yang-Baxter equation
    Bardakov, Valeriy G.
    Gubarev, Vsevolod
    JOURNAL OF ALGEBRA, 2022, 596 : 328 - 351
  • [5] Soluble skew left braces and soluble solutions of the Yang-Baxter equation
    Ballester-Bolinches, A.
    Esteban-Romero, R.
    Jimenez-Seral, P.
    Perez-Calabuig, V.
    ADVANCES IN MATHEMATICS, 2024, 455
  • [6] CENTRAL NILPOTENCY OF LEFT SKEW BRACES AND SOLUTIONS OF THE YANG-BAXTER EQUATION
    Ballester-bolinches, Adolfo
    Esteban-romero, Ramon
    Ferrara, Maria
    Perez-calabuig, Vicent
    Trombetti, Marco
    PACIFIC JOURNAL OF MATHEMATICS, 2025, 335 (01)
  • [7] Braces and the Yang-Baxter Equation
    Cedo, Ferran
    Jespers, Eric
    Okninski, Jan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (01) : 101 - 116
  • [8] Skew left braces and 2-reductive solutions of the Yang-Baxter equation
    Jedlicka, Premysl
    Pilitowska, Agata
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (04)
  • [9] Solutions of the Yang-Baxter equation associated to skew left braces, with applications to racks
    Bachiller, David
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2018, 27 (08)
  • [10] Asymmetric product of left braces and simplicity; new solutions of the Yang-Baxter equation
    Bachiller, D.
    Cedo, F.
    Jespers, E.
    Okninski, J.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (08)