On first-order formalism in string theory

被引:27
|
作者
Losev, AS
Marshakov, A
Zeitlin, AM [1 ]
机构
[1] PN Lebedev Phys Inst, Dept Theoret Phys, Moscow 119991, Russia
[2] Inst Theoret & Expt Phys, Moscow 117259, Russia
[3] VA Steklov Math Inst, St Petersburg Dept, St Petersburg 191023, Russia
基金
俄罗斯基础研究基金会;
关键词
string theory; conformal field theory; sigma model;
D O I
10.1016/j.physletb.2005.12.010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the first-order formalism in string theory, providing a new off-shell description of the non-trivial backgrounds around an "infinite metric". The OPE of the vertex operators, corresponding to the background fields in some "twistor representation", and conditions of conformal invariance results in the quadratic equation for the background fields, which appears to be equivalent to the Einstein equations with a Kalb-Ramond B-field and a dilaton. Using a new representation for the Einstein equations with B-field and dilaton we find a new class of solutions including the plane waves for metric (graviton) and the B-field. We discuss the properties of these background equations and main features of the BRST operator in this approach. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:375 / 381
页数:7
相关论文
共 50 条
  • [31] First-order formalism for thick branes in modified teleparallel gravity
    Menezes, Roberto
    [J]. PHYSICAL REVIEW D, 2014, 89 (12):
  • [32] Dark energy dominance and cosmic acceleration in first-order formalism
    Allemandi, G
    Borowiec, A
    Francaviglia, M
    Odintsov, SD
    [J]. PHYSICAL REVIEW D, 2005, 72 (06):
  • [33] Generalized Chern–Simons modified gravity in first-order formalism
    Ümit Ertem
    Özgür Açık
    [J]. General Relativity and Gravitation, 2013, 45 : 477 - 488
  • [34] THE FIRST-ORDER THEORY OF BRANCH GROUPS
    Wilson, John S.
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 102 (01) : 150 - 158
  • [35] Integrability of second-order Lagrangians admitting a first-order Hamiltonian formalism
    Rosado Maria, E.
    Munoz Masque, J.
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 : 164 - 177
  • [36] First-order gradient damage theory
    Bing Zhao
    Ying-ren Zheng
    Ming-hua Zeng
    Xue-song Tang
    Xiao-gang Li
    [J]. Applied Mathematics and Mechanics, 2010, 31 : 987 - 994
  • [37] On the complexity of the first-order random theory
    Lotfallah, WB
    [J]. JOURNAL OF LOGIC AND COMPUTATION, 2003, 13 (02) : 261 - 271
  • [38] First-order gradient damage theory
    Zhao, Bing
    Zheng, Ying-ren
    Zeng, Ming-hua
    Tang, Xue-song
    Li, Xiao-gang
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (08) : 987 - 994
  • [39] First-order gradient damage theory
    赵冰
    郑颖人
    曾明华
    唐雪松
    李小纲
    [J]. Applied Mathematics and Mechanics(English Edition), 2010, 31 (08) : 987 - 994
  • [40] A behavioural theory of first-order CML
    Ferreira, W
    Hennessy, M
    [J]. THEORETICAL COMPUTER SCIENCE, 1999, 216 (1-2) : 55 - 107