Robustness analysis of continuous periodic systems using integral quadratic constraints

被引:0
|
作者
Ossmann, Daniel [1 ]
Pfifer, Harald [2 ]
机构
[1] Munich Univ Appl Sci, Dept Mech Automot & Aeronaut Engn, Dachauer Str 98b, D-80335 Munich, Germany
[2] Univ Nottingham, Fac Engn, Univ Pk, Nottingham NG7 2RD, England
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A general approach to analyze the robust performance and robust stability via the worst-case input/output gain for uncertain, linear time periodic systems is presented. The input/output behavior of the uncertain block is described by an integral quadratic constraint. A dissipation inequality is derived to compute an upper bound for this gain. The worst-case gain condition can be formulated as a semidefinite program and the result can be interpreted as a Bounded Real Lemma for uncertain linear periodic systems. The effectiveness of the proposed method is demonstrated on a realistic numerical example of a controlled wind turbine.
引用
收藏
页码:5805 / 5810
页数:6
相关论文
共 50 条
  • [11] Robustness analysis of uncertain time-varying systems using integral quadratic constraints with time-varying multipliers
    Fry, J. Micah
    Abou Jaoude, Dany
    Farhood, Mazen
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (03) : 733 - 758
  • [12] Stability analysis of periodic solutions via integral quadratic constraints
    Basso, M
    Giovanardi, L
    Genesio, R
    [J]. DYNAMICS, BIFURCATIONS AND CONTROL, 2002, 273 : 145 - 157
  • [13] Distributed robustness analysis of heterogeneous networks via integral quadratic constraints
    Khong, Sei Zhen
    Rantzer, Anders
    [J]. 2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 3980 - 3985
  • [14] Robustness analysis of the feedback interconnection of discrete-time negative imaginary systems via integral quadratic constraints
    Zhang, Qian
    Liu, Liu
    Lu, Yufeng
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (10) : 2775 - 2782
  • [15] Robustness analysis of the feedback interconnection of discrete-time negative imaginary systems via integral quadratic constraints
    Zhang, Qian
    Liu, Liu
    Lu, Yufeng
    [J]. International Journal of Control, 2021, 94 (10): : 2775 - 2782
  • [16] Conic sector analysis using integral quadratic constraints
    Turner, Matthew C.
    Forbes, James R.
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (02) : 741 - 755
  • [17] Analysis of rate limiters using integral quadratic constraints
    Rantzer, A
    Megretski, A
    [J]. NONLINEAR CONTROL SYSTEMS DESIGN 1998, VOLS 1& 2, 1998, : 669 - 673
  • [18] Analysis of aperiodic sampled data Lur'e Systems using integral quadratic constraints
    Turner, Matthew C.
    Gomes da Silva, Joao M., Jr.
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 5811 - 5816
  • [19] Structure and factorization of quadratic constraints for robustness analysis
    Goh, KC
    [J]. PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 4649 - 4654
  • [20] Backward Reachability Using Integral Quadratic Constraints for Uncertain Nonlinear Systems
    Yin, He
    Seiler, Peter
    Arcak, Murat
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (02): : 707 - 712