Infinity cones and functions in real vector spaces: An existence result

被引:0
|
作者
Ernst, Emil [1 ]
Volle, Michel [2 ]
机构
[1] Aix Marseille Univ, UMR6632, F-13397 Marseille, France
[2] Univ Avignon & Pays Vaucluse, F-84029 Avignon 1, France
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2008年 / 4卷 / 03期
关键词
anticonvex set; radially anticonvex set; radially anticonvex function; infinity cone; infinity functions; recession analysis;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the real vector space setting, we prove that any apex-containing cone whose apex is the null vector is the infinity cone of some set. Moreover, we introduce an infinity mapping notion such that any 1-homogeneous extended-real-valued function not identically equal to +infinity coincides with the infinity mapping to some extended-real-valued function. These results heavily rely on the properties of two newly introduced objects, the radially anticonvex sets and the radially anticonvex functions.
引用
收藏
页码:465 / 481
页数:17
相关论文
共 50 条
  • [21] On the existence of weak bases for vector spaces
    Herden, Daniel
    Hrbek, Michal
    Ruzicka, Pavel
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 501 : 98 - 111
  • [22] A NOTE ON CONVEX CONES IN TOPOLOGICAL VECTOR-SPACES
    STERNAKARWAT, A
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1987, 35 (01) : 97 - 109
  • [23] Existence of quasiequilibria in metric vector spaces
    Castellani, M.
    Giuli, M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 484 (01)
  • [24] Existence and Uniqueness of Limits at Infinity for Bounded Variation Functions
    Lahti, Panu
    Nguyen, Khanh
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (11)
  • [25] Conical coercivity conditions and global minimization on cones. An existence result
    Isac, G
    [J]. STATE OF THE ART IN GLOBAL OPTIMIZATION: COMPUTATIONAL METHODS AND APPLICATIONS, 1996, 7 : 93 - 107
  • [26] Vector Optimization w.r.t. Relatively Solid Convex Cones in Real Linear Spaces
    Christian Günther
    Bahareh Khazayel
    Christiane Tammer
    [J]. Journal of Optimization Theory and Applications, 2022, 193 : 408 - 442
  • [27] Vector Optimization w.r.t. Relatively Solid Convex Cones in Real Linear Spaces
    Guenther, Christian
    Khazayel, Bahareh
    Tammer, Christiane
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 193 (1-3) : 408 - 442
  • [28] Existence and uniqueness of limits at infinity for homogeneous Sobolev functions
    Koskela, Pekka
    Nguyen, Khanh
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (11)
  • [29] REPRESENSIBILITY OF CONES OF MONOTONE FUNCTIONS IN WEIGHTED LEBESGUE SPACES AND EXTRAPOLATION OF OPERATORS ON THESE CONES
    Berezhnoi, E. I.
    Maligranda, L.
    [J]. ST PETERSBURG MATHEMATICAL JOURNAL, 2018, 29 (04) : 545 - 574
  • [30] SPACES OF CONTINUOUS VECTOR FUNCTIONS
    KATSARAS, A
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 1978, 102 (03): : 231 - 240