A 213-line topology optimization code for geometrically nonlinear structures

被引:67
|
作者
Chen, Qi [1 ]
Zhang, Xianmin [1 ]
Zhu, Benliang [1 ]
机构
[1] South China Univ Technol, Guangdong Key Lab Precis Equipment & Mfg Technol, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
MATLAB code; ANSYS; Topology optimization; Geometrical nonlinearity; PIEZORESISTIVE PRESSURE SENSOR; WRITTEN; DESIGN;
D O I
10.1007/s00158-018-2138-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a 213-line MATLAB code for topology optimization of geometrically nonlinear structures. It is developed based on the density method. The code adopts the ANSYS parametric design language (APDL) that provides convenient access to advanced finite element analysis (FEA). An additive hyperelasticity technique is employed to circumvent numerical difficulties in solving the material density-based topology optimization of elastic structures undergoing large displacements. The sensitivity information is obtained by extracting the increment of the element strain energy. The validity of the code is demonstrated by the minimum compliance problem and the compliant inverter problem.
引用
收藏
页码:1863 / 1879
页数:17
相关论文
共 50 条
  • [41] On the co-rotational method for geometrically nonlinear topology optimization
    Peter D. Dunning
    [J]. Structural and Multidisciplinary Optimization, 2020, 62 : 2357 - 2374
  • [42] Stabilization of geometrically nonlinear topology optimization by the Levenberg–Marquardt method
    Atsushi Kawamoto
    [J]. Structural and Multidisciplinary Optimization, 2009, 37 : 429 - 433
  • [43] Geometrically nonlinear topology and fiber orientation optimization of composite structures using membrane-embedded model
    Zuo, Wenjie
    Xie, Xinyu
    Zhang, Ran
    Lu, Yuyuan
    Tang, Tao
    An, Lijia
    Bai, Jiantao
    [J]. THIN-WALLED STRUCTURES, 2024, 203
  • [44] Topology optimization of nonlinear flexoelectric structures
    Zhuang, Xiaoying
    Thai, Tran Quoc
    Rabczuk, Timon
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2023, 171
  • [45] Benchmark case studies in optimization of geometrically nonlinear structures
    Suleman, A
    Sedaghati, R
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2005, 30 (04) : 273 - 296
  • [46] Benchmark case studies in optimization of geometrically nonlinear structures
    A. Suleman
    R. Sedaghati
    [J]. Structural and Multidisciplinary Optimization, 2005, 30 : 273 - 296
  • [47] Isogeometric Shape Design Optimization of Geometrically Nonlinear Structures
    Koo, Bonyong
    Ha, Seung-Hyun
    Kim, Hyun-Seok
    Cho, Seonho
    [J]. MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES, 2013, 41 (03) : 337 - 358
  • [48] Element deformation scaling for robust geometrically nonlinear analyses in topology optimization
    N. P. van Dijk
    M. Langelaar
    F. van Keulen
    [J]. Structural and Multidisciplinary Optimization, 2014, 50 : 537 - 560
  • [49] A new geometrically nonlinear topology optimization formulation for controlling maximum displacement
    Chen, Zhuo
    Long, Kai
    Wang, Xuan
    Liu, Jie
    Saeed, Nouman
    [J]. ENGINEERING OPTIMIZATION, 2021, 53 (08) : 1283 - 1297
  • [50] Element deformation scaling for robust geometrically nonlinear analyses in topology optimization
    van Dijk, N. P.
    Langelaar, M.
    van Keulen, F.
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2014, 50 (04) : 537 - 560