MULTICENTRIC HOLOMORPHIC CALCULUS FOR n-TUPLES OF COMMUTING OPERATORS

被引:2
|
作者
Andrei, Diana [1 ]
机构
[1] Univ Aalto, Dept Math & Syst Anal, POB 11100,Otakaari 1M, FI-00076 Espoo, Aalto, Finland
来源
ADVANCES IN OPERATOR THEORY | 2019年 / 4卷 / 02期
关键词
Multicentric calculus; commuting operator; lemniscate; von Neumann's inequality; homogeneous polynomial;
D O I
10.15352/aot.1804-1346
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In multicentric holomorphic calculus, one represents the function phi, using a new polynomial variable omega = p(z); z is an element of C; in such a way that when it is evaluated at the operator T; then p(T) is small in norm. Usually it is assumed that p has distinct roots. In this paper we aim to extend this multicentric holomorphic calculus to n-tuples of commuting operators looking in particular at the case when n = 2.
引用
收藏
页码:447 / 461
页数:15
相关论文
共 50 条
  • [31] PROBABILITY OF MUTUALLY COMMUTING N-TUPLES IN SOME CLASSES OF COMPACT GROUPS
    Erfanian, A.
    Russo, F.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2008, 34 (02): : 27 - 37
  • [32] Isometric dilations of non-commuting finite rank n-tuples
    Davidson, KR
    Kribs, DW
    Shpigel, ME
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2001, 53 (03): : 506 - 545
  • [33] On non-holomorphic functional calculus for commuting operators
    Sandberg, S
    [J]. MATHEMATICA SCANDINAVICA, 2003, 93 (01) : 109 - 135
  • [34] TAYLOR SPECTRA AND COMMON INVARIANT SUBSPACES THROUGH THE DUGGAL AND GENERALIZED ALUTHGE TRANSFORMS FOR COMMUTING n-TUPLES OF OPERATORS
    Kim, Jaewoong
    Yoon, Jasang
    [J]. JOURNAL OF OPERATOR THEORY, 2019, 81 (01) : 81 - 105
  • [35] Orbits on n-Tuples
    Applegate, Ross
    Cameron, Peter J.
    [J]. COMMUNICATIONS IN ALGEBRA, 2009, 37 (01) : 269 - 275
  • [36] Exceptional n-tuples
    Just, E
    Schaumberger, N
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (08): : 775 - 777
  • [37] Non-commutative Clarkson inequalities for n-tuples of operators
    Hirzallah, Omar
    Kittaneh, Fuad
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 60 (03) : 369 - 379
  • [38] Hybrid normed ideal perturbations of n-tuples of operators I
    Voiculescu, Dan-Virgil
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2018, 128 : 169 - 184
  • [39] Non-commutative Clarkson Inequalities for n-Tuples of Operators
    Omar Hirzallah
    Fuad Kittaneh
    [J]. Integral Equations and Operator Theory, 2008, 60 : 369 - 379
  • [40] SHOENFIELD ON N-TUPLES
    BUTRICK, R
    [J]. SYNTHESE, 1978, 38 (01) : 35 - 37