Packing and Covering Immersion Models of Planar Subcubic Graphs

被引:2
|
作者
Giannopoulou, Archontia C. [1 ]
Kwon, O-joung [2 ]
Raymond, Jean-Florent [1 ,3 ]
Thilikos, Dimitrios M. [3 ,4 ]
机构
[1] Tech Univ Berlin, Berlin, Germany
[2] Hungarian Acad Sci, Inst Comp Sci & Control, Budapest, Hungary
[3] LIRMM, CNRS, AlGCo Project Team, Montpellier, France
[4] Univ Athens, Dept Math, Athens, Greece
关键词
Erdo-Posa properties; Graph immersions; Packings and coverings in graphs; ERDOS-POSA PROPERTY; DISJOINT ODD CYCLES; TREE-PARTITIONS; MINORS;
D O I
10.1007/978-3-662-53536-3_7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A graph H is an immersion of a graph G if H can be obtained by some subgraph G after lifting incident edges. We prove that there is a polynomial function f : N x N -> N, such that if H is a connected planar subcubic graph on h > 0 edges, G is a graph, and k is a non-negative integer, then either G contains k vertex/edge-disjoint subgraphs, each containing H as an immersion, or G contains a set F of f(k, h) vertices/edges such that G \ F does not contain H as an immersion.
引用
收藏
页码:74 / 84
页数:11
相关论文
共 50 条
  • [1] Packing and covering immersion-expansions of planar sub-cubic graphs
    Giannopoulou, Archontia C.
    Kwon, O-Joung
    Raymond, Jean-Florent
    Thilikos, Dimitrios M.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2017, 65 : 154 - 167
  • [2] Packing and Covering Triangles in Planar Graphs
    Cui, Qing
    Haxell, Penny
    Ma, Will
    [J]. GRAPHS AND COMBINATORICS, 2009, 25 (06) : 817 - 824
  • [3] Packing and Covering Triangles in Planar Graphs
    Qing Cui
    Penny Haxell
    Will Ma
    [J]. Graphs and Combinatorics, 2009, 25 : 817 - 824
  • [4] Packing colorings of subcubic outerplanar graphs
    Boštjan Brešar
    Nicolas Gastineau
    Olivier Togni
    [J]. Aequationes mathematicae, 2020, 94 : 945 - 967
  • [5] Packing colorings of subcubic outerplanar graphs
    Bresar, Bostjan
    Gastineau, Nicolas
    Togni, Olivier
    [J]. AEQUATIONES MATHEMATICAE, 2020, 94 (05) : 945 - 967
  • [6] Induced Matchings in Subcubic Planar Graphs
    Kang, Ross J.
    Mnich, Matthias
    Mueller, Tobias
    [J]. ALGORITHMS-ESA 2010, PT II, 2010, 6347 : 112 - +
  • [7] The Planar Slope Number of Subcubic Graphs
    Di Giacomo, Emilio
    Liotta, Giuseppe
    Montecchiani, Fabrizio
    [J]. LATIN 2014: THEORETICAL INFORMATICS, 2014, 8392 : 132 - 143
  • [8] Independent domination versus packing in subcubic graphs
    Cho, Eun-Kyung
    Kim, Minki
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 357 : 132 - 134
  • [9] INDUCED MATCHINGS IN SUBCUBIC PLANAR GRAPHS
    Kang, Ross J.
    Mnich, Matthias
    Muller, Tobias
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (03) : 1383 - 1411
  • [10] On packing S-colorings of subcubic graphs
    Yang, Wei
    Wu, Baoyindureng
    [J]. DISCRETE APPLIED MATHEMATICS, 2023, 334 : 1 - 14