The Planar Slope Number of Subcubic Graphs

被引:0
|
作者
Di Giacomo, Emilio [1 ]
Liotta, Giuseppe [1 ]
Montecchiani, Fabrizio [1 ]
机构
[1] Univ Perugia, Dip Ingn, I-06100 Perugia, Italy
来源
关键词
CUBIC GRAPHS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A subcubic planar graph is a planar graph whose vertices have degree at most three. We show that the subcubic planar graphs with at least five vertices have planar slope number at most four, which is worst case optimal. This answers an open question by Jelinek et al. [6]. As a corollary, we prove that the subcubic planar graphs with at least five vertices have angular resolution pi/4, which solves an open problem by Kant [7] and by Formann et al. [4].
引用
收藏
页码:132 / 143
页数:12
相关论文
共 50 条
  • [1] Star list chromatic number of planar subcubic graphs
    Min Chen
    André Raspaud
    Weifan Wang
    [J]. Journal of Combinatorial Optimization, 2014, 27 : 440 - 450
  • [2] Star list chromatic number of planar subcubic graphs
    Chen, Min
    Raspaud, Andre
    Wang, Weifan
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (03) : 440 - 450
  • [3] Induced Matchings in Subcubic Planar Graphs
    Kang, Ross J.
    Mnich, Matthias
    Mueller, Tobias
    [J]. ALGORITHMS-ESA 2010, PT II, 2010, 6347 : 112 - +
  • [4] INDUCED MATCHINGS IN SUBCUBIC PLANAR GRAPHS
    Kang, Ross J.
    Mnich, Matthias
    Muller, Tobias
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (03) : 1383 - 1411
  • [5] Exact square coloring of subcubic planar graphs
    Foucaud, Florent
    Hocquard, Herve
    Mishra, Suchismita
    Narayanan, Narayanan
    Naserasr, Reza
    Sopena, Eric
    Valicov, Petru
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 293 : 74 - 89
  • [6] On Lower Bounds for the Matching Number of Subcubic Graphs
    Haxell, P. E.
    Scott, A. D.
    [J]. JOURNAL OF GRAPH THEORY, 2017, 85 (02) : 336 - 348
  • [7] On the packing chromatic number of subcubic outerplanar graphs
    Gastineau, Nicolas
    Holub, Premysl
    Togni, Olivier
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 255 : 209 - 221
  • [8] Choosability of the square of planar subcubic graphs with large girth
    Havet, F.
    [J]. DISCRETE MATHEMATICS, 2009, 309 (11) : 3553 - 3563
  • [9] Subcubic planar graphs of girth 7 are class I
    Bonduelle, Sebastien
    Kardos, Frantisek
    [J]. DISCRETE MATHEMATICS, 2022, 345 (10)
  • [10] Injective choosability of subcubic planar graphs with girth 6
    Brimkov, Boris
    Edmond, Jennifer
    Lazar, Robert
    Lidicky, Bernard
    Messerschmidt, Kacy
    Walker, Shanise
    [J]. DISCRETE MATHEMATICS, 2017, 340 (10) : 2538 - 2549