On conjugacy growth of linear groups

被引:8
|
作者
Breuillard, Emmanuel [1 ]
Cornulier, Yves [1 ]
Lubotzky, Alexander [2 ]
Meiri, Chen [2 ]
机构
[1] Univ Paris 11, Math Lab, F-91405 Orsay, France
[2] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
UNIFORM EXPONENTIAL-GROWTH; ZARISKI-DENSE SUBGROUPS; STRONG APPROXIMATION;
D O I
10.1017/S030500411200059X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the conjugacy growth of finitely generated linear groups. We show that finitely generated non-virtually-solvable subgroups of GL(d) have uniform exponential conjugacy growth and in fact that the number of distinct polynomials arising as characteristic polynomials of the elements of the ball of radius n for the word metric has exponential growth rate bounded away from 0 in terms of the dimension d only.
引用
收藏
页码:261 / 277
页数:17
相关论文
共 50 条