Uniform-in-bandwidth kernel estimation for censored data

被引:3
|
作者
Ouadah, Sarah [1 ]
机构
[1] Univ Paris 06, LSTA, F-75252 Paris, France
关键词
Functional limit laws; Right random censorship model; Kernel lifetime density estimators; Kernel failure rate estimators; Kaplan-Meier empirical process; Convergence in probability; NONPARAMETRIC-ESTIMATION; DENSITY ESTIMATORS; ITERATED LOGARITHM; HAZARD FUNCTION; LIMIT LAWS; CONSISTENCY; INCREMENTS;
D O I
10.1016/j.jspi.2013.03.017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a sharp uniform-in-bandwidth functional limit law for the increments of the Kaplan-Meier empirical process based upon right-censored random data. We apply this result to obtain limit laws for nonparametric kernel estimators of local functionals of lifetime densities, which are uniform with respect to the choices of bandwidth and kernel. These are established in the framework of convergence in probability, and we allow the bandwidth to vary within the complete range for which the estimators are consistent. We provide explicit values for the asymptotic limiting constant for the sup-norm of the estimation random error. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1273 / 1284
页数:12
相关论文
共 50 条
  • [11] Bandwidth selection in density estimation with truncated and censored data
    Sanchez-Sellero, C.
    Gonzalez-Manteiga, W.
    Cao, R.
    [J]. Institute of Statistical Mathematics. Annals, 51 (01): : 51 - 70
  • [12] Bandwidth Selection in Density Estimation with Truncated and Censored Data
    C. Sánchez-Sellero
    W. González-Manteiga
    R. Cao
    [J]. Annals of the Institute of Statistical Mathematics, 1999, 51 : 51 - 70
  • [13] Uniform in bandwidth consistency of kernel estimators of the density of mixed data
    Mason, David M.
    Swanepoel, Jan W. H.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 1518 - 1539
  • [14] Relative density estimation and local bandwidth selection for censored data
    Cao, R
    Janssen, P
    Veraverbeke, N
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2001, 36 (04) : 497 - 510
  • [15] Kernel estimation of conditional density with truncated, censored and dependent data
    Liang, Han-Ying
    Liu, Ai-Ai
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 120 : 40 - 58
  • [16] Kernel density and hazard rate estimation for censored dependent data
    Cai, ZW
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1998, 67 (01) : 23 - 34
  • [17] Kernel survival function estimation based on doubly censored data
    Biswas, Animikh
    Sundaram, Rajeshwari
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (07) : 1293 - 1307
  • [18] Strong uniform consistency of a kernel conditional quantile estimator for censored and associated data
    Djelladj, Wafaa
    Tatachak, Abdelkader
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (01): : 290 - 311
  • [19] Uniform in bandwidth consistency for various kernel estimators involving functional data
    Kara-Zaitri, Lydia
    Laksaci, Ali
    Rachdi, Mustapha
    Vieu, Philippe
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2017, 29 (01) : 85 - 107
  • [20] Uniform convergence rates for kernel estimation with dependent data
    Hansen, Bruce E.
    [J]. ECONOMETRIC THEORY, 2008, 24 (03) : 726 - 748