Limits of [18F]-FLT PET as a Biomarker of Proliferation in Oncology

被引:76
|
作者
McKinley, Eliot T. [1 ,2 ]
Ayers, Gregory D. [3 ]
Smith, R. Adam [1 ]
Saleh, Samir A. [1 ]
Zhao, Ping [1 ]
Washington, Mary Kay [4 ,5 ,6 ]
Coffey, Robert J. [5 ,6 ]
Manning, H. Charles [1 ,2 ,6 ,7 ,8 ,9 ]
机构
[1] Vanderbilt Univ, Med Ctr, VUIIS, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Med Ctr, Dept Biostat, Nashville, TN USA
[4] Vanderbilt Univ, Med Ctr, Dept Pathol, Nashville, TN 37232 USA
[5] Vanderbilt Univ, Dept Med, Sch Med, Nashville, TN USA
[6] Vanderbilt Univ, Med Ctr, Vanderbilt Ingram Canc Ctr, Nashville, TN USA
[7] Vanderbilt Univ, Med Ctr, Dept Radiol & Radiol Sci, Nashville, TN 37232 USA
[8] Vanderbilt Univ, Med Ctr, Program Chem & Phys Biol, Nashville, TN USA
[9] Vanderbilt Univ, Med Ctr, Dept Neurosurg, Nashville, TN USA
来源
PLOS ONE | 2013年 / 8卷 / 03期
关键词
POSITRON-EMISSION-TOMOGRAPHY; COLORECTAL-CANCER; IN-VIVO; CELLULAR PROLIFERATION; IMAGING PROLIFERATION; BREAST-CANCER; F-18-FLT PET; KINETIC-ANALYSIS; THORACIC TUMORS; BRAIN-TUMORS;
D O I
10.1371/journal.pone.0058938
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Non-invasive imaging biomarkers of cellular proliferation hold great promise for quantifying response to personalized medicine in oncology. An emerging approach to assess tumor proliferation utilizes the positron emission tomography (PET) tracer 3'-deoxy-3'[F-18]-fluorothymidine, [F-18]-FLT. Though several studies have associated serial changes in [F-18]-FLT-PET with elements of therapeutic response, the degree to which [F-18]-FLT-PET quantitatively reflects proliferative index has been continuously debated for more that a decade. The goal of this study was to elucidate quantitative relationships between [F-18]-FLT-PET and cellular metrics of proliferation in treatment naive human cell line xenografts commonly employed in cancer research. Methods and Findings: [F-18]-FLT-PET was conducted in human cancer xenograft-bearing mice. Quantitative relationships between PET, thymidine kinase 1 (TK1) protein levels and immunostaining for proliferation markers (Ki67, TK1, PCNA) were evaluated using imaging-matched tumor specimens. Overall, we determined that [F-18]-FLT-PET reflects TK1 protein levels, yet the cell cycle specificity of TK1 expression and the extent to which tumors utilize thymidine salvage for DNA synthesis decouple [F-18]-FLT-PET data from standard estimates of proliferative index. Conclusions: Our findings illustrate that [F-18]-FLT-PET reflects tumor proliferation as a function of thymidine salvage pathway utilization. Unlike more general proliferation markers, such as Ki67, [F-18]-FLT PET reflects proliferative indices to variable and potentially unreliable extents. [F-18]-FLT-PET cannot discriminate moderately proliferative, thymidine salvage-driven tumors from those of high proliferative index that rely primarily upon de novo thymidine synthesis. Accordingly, the magnitude of [F-18]-FLT uptake should not be considered a surrogate of proliferative index. These data rationalize the diversity of [F-18]-FLT-PET correlative results previously reported and suggest future best-practices when [F-18]-FLT-PET is employed in oncology.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Visualisation of neuroblastoma growth in a Scid mouse model using [18F]FDG and [18F]FLT-PET
    Krieger-Hinck, Nina
    Gustke, Heike
    Valentiner, Ursula
    Mikecz, Pal
    Buchert, Ralph
    Mester, Janos
    Schumacher, Udo
    ANTICANCER RESEARCH, 2006, 26 (5A) : 3467 - 3472
  • [22] Cell proliferation detected using [18F]FLT PET/CT as an early marker of abdominal aortic aneurysm
    Gandhi, Richa
    Cawthorne, Christopher
    Craggs, Lucinda J. L.
    Wright, John D.
    Domarkas, Juozas
    He, Ping
    Koch-Paszkowski, Joanna
    Shires, Michael
    Scarsbrook, Andrew F.
    Archibald, Stephen J.
    Tsoumpas, Charalampos
    Bailey, Marc A.
    JOURNAL OF NUCLEAR CARDIOLOGY, 2021, 28 (05) : 1961 - 1971
  • [23] [18F]FLT vs [18F]FDG for tumor-PET:: First results of a comparative study.
    Dohmen, BM
    Dittmann, H
    Wei, R
    Thelen, M
    Bilger, K
    Machulla, HJ
    Bares, R
    JOURNAL OF NUCLEAR MEDICINE, 2000, 41 (05) : 74P - 74P
  • [24] Cell proliferation detected using [18F]FLT PET/CT as an early marker of abdominal aortic aneurysm
    Richa Gandhi
    Christopher Cawthorne
    Lucinda J. L. Craggs
    John D. Wright
    Juozas Domarkas
    Ping He
    Joanna Koch-Paszkowski
    Michael Shires
    Andrew F. Scarsbrook
    Stephen J. Archibald
    Charalampos Tsoumpas
    Marc A. Bailey
    Journal of Nuclear Cardiology, 2021, 28 : 1961 - 1971
  • [25] Radiosynthesis of 3′-deoxy-3′-[18F]fluorothymidine:: [18F]FLT for imaging of cellular proliferation in vivo
    Grierson, JR
    Shields, AF
    NUCLEAR MEDICINE AND BIOLOGY, 2000, 27 (02) : 143 - 156
  • [26] PET in gyneco-oncology, beyond [18F]FDG?
    Chanchou, M.
    MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE, 2023, 47 (04): : 183 - 185
  • [27] Non-[18F]FDG PET in clinical oncology
    Groves, Ashley M.
    Win, Thida
    Ben Haim, Simona
    Ell, Peter J.
    LANCET ONCOLOGY, 2007, 8 (09): : 822 - 830
  • [28] Impact of [18F]FDG-PET and [18F]FLT-PET-Parameters in Patients with Suspected Relapse of Irradiated Lung Cancer
    Christensen, Tine N.
    Langer, Seppo W.
    Persson, Gitte
    Larsen, Klaus Richter
    Amtoft, Annemarie G.
    Keller, Sune H.
    Kjaer, Andreas
    Fischer, Barbara Malene
    DIAGNOSTICS, 2021, 11 (02)
  • [29] A practical synthesis of [18F]FtRGD: an angiogenesis biomarker for PET
    Bejot, Romain
    Goggi, Julian
    Moonshi, Shebbrin S.
    Robins, Edward G.
    JOURNAL OF LABELLED COMPOUNDS & RADIOPHARMACEUTICALS, 2013, 56 (02): : 42 - 49
  • [30] Is 3′-deoxy-3′-[18F] fluorothymidine ([18F]-FLT) the next tracer for routine clinical PET after R [18F]-FDG?
    Couturier, O
    Leost, F
    Campone, M
    Carlier, T
    Chatal, JF
    Hustinx, R
    BULLETIN DU CANCER, 2005, 92 (09) : 789 - 798