SYNCHRONIZING QUASI-EULERIAN AND QUASI-ONE-CLUSTER AUTOMATA

被引:7
|
作者
Berlinkov, Mikhail V. [1 ]
机构
[1] Ural Fed Univ, Inst Math & Comp Sci, Ekaterinburg 620000, Russia
基金
俄罗斯基础研究基金会;
关键词
Synchronizing automata; the Cerny conjecture; Markov chains; primitive matrices; extension method; CONJECTURE; WORD; SIZE;
D O I
10.1142/S0129054113400157
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We describe a new version of the so-called extension method that was used to prove quadratic upper bounds on the minimum length of reset words for various important classes of synchronizing automata. Our approach is formulated in terms of Markov chains; it is in a sense dual to the usual extension method and improves on a recent result by Jungers. As an application, we obtain a quadratic upper bounds on the minimum length of reset words for generalizations of Eulerian and one-cluster automata. Finally, we show that the proposed approach is in some sense equivalent to the extension method.
引用
收藏
页码:729 / 745
页数:17
相关论文
共 50 条
  • [21] Magnon nanometric filters in quasi-one-dimensional cluster chains
    Al-Wahsh, H.
    Dobrzynski, L.
    Djafari-Rouhani, B.
    Akjouj, A.
    SURFACE SCIENCE, 2007, 601 (21) : 4801 - 4808
  • [22] Anomalous relaxation in a quasi-one-dimensional fractal cluster glass
    Etzkorn, SJ
    Hibbs, W
    Miller, JS
    Epstein, AJ
    PHYSICAL REVIEW B, 2004, 70 (13) : 134419 - 1
  • [23] Magnon nanometric multiplexer in quasi-one-dimensional cluster chains
    Al-Wahsh, H.
    Djafari-Rouhani, B.
    Dobrzynski, L.
    Akjouj, A.
    SURFACE SCIENCE, 2008, 602 (10) : 1795 - 1802
  • [24] An Eulerian projection method for quasi-static elastoplasticity
    Rycroft, Chris H.
    Sui, Yi
    Bouchbinder, Eran
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 300 : 136 - 166
  • [25] TOPOLOGICAL AUTOMATA WITH QUASI-POWER MORPHISMS
    ROBBIE, DA
    PIACUN, NM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A247 - &
  • [26] QUASIVARIETIES OF AUTOMATA - CONNECTIONS WITH QUASI-GROUPS
    GVARAMIYA, AA
    SIBERIAN MATHEMATICAL JOURNAL, 1985, 26 (03) : 315 - 331
  • [27] Cluster heat bath method on a quasi-one-dimensional ising model
    Koseki, O
    Matsubara, F
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (02) : 322 - 325
  • [28] CLUSTER COHERENT-POTENTIAL APPROXIMATION FOR QUASI-ONE-DIMENSIONAL SYSTEMS
    DAY, RS
    MARTINO, F
    PHYSICAL REVIEW B, 1982, 25 (06): : 3482 - 3489
  • [29] QUASI-GROUPS DEFINING EULERIAN PATHS IN COMPLETE GRAPHS
    KOTZIG, A
    TURGEON, JM
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1982, 32 (01) : 45 - 56
  • [30] RESULTS ON QUASI-STATISTICAL LIMIT AND QUASI-STATISTICAL CLUSTER POINTS
    Ozguc, Ilknur
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (01): : 646 - 653