SYNCHRONIZING QUASI-EULERIAN AND QUASI-ONE-CLUSTER AUTOMATA

被引:7
|
作者
Berlinkov, Mikhail V. [1 ]
机构
[1] Ural Fed Univ, Inst Math & Comp Sci, Ekaterinburg 620000, Russia
基金
俄罗斯基础研究基金会;
关键词
Synchronizing automata; the Cerny conjecture; Markov chains; primitive matrices; extension method; CONJECTURE; WORD; SIZE;
D O I
10.1142/S0129054113400157
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We describe a new version of the so-called extension method that was used to prove quadratic upper bounds on the minimum length of reset words for various important classes of synchronizing automata. Our approach is formulated in terms of Markov chains; it is in a sense dual to the usual extension method and improves on a recent result by Jungers. As an application, we obtain a quadratic upper bounds on the minimum length of reset words for generalizations of Eulerian and one-cluster automata. Finally, we show that the proposed approach is in some sense equivalent to the extension method.
引用
收藏
页码:729 / 745
页数:17
相关论文
共 50 条
  • [1] Quasi-Eulerian Hypergraphs
    Bahmanian, Amin
    Sajna, Mateja
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (03):
  • [2] l-Covering k-Hypergraphs are Quasi-Eulerian
    Sajna, Mateja
    Wagner, Andrew
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (04) : 1091 - 1102
  • [3] A quasi-Eulerian, quasi-Lagrangian view of surface-wave-induced flow in the ocean
    Brostrom, Goran
    Christensen, Kai Hakon
    Weber, Jan Erik H.
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2008, 38 (05) : 1122 - 1130
  • [4] QUASI-EULERIAN FINITE-ELEMENT FORMULATION FOR FLUID-STRUCTURE INTERACTION
    BELYTSCHKO, T
    KENNEDY, JM
    SCHOEBERLE, DF
    JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 1980, 102 (01): : 62 - 69
  • [5] QUASI-EULERIAN FINITE-ELEMENT FORMULATION FOR FLUID-STRUCTURE INTERACTION
    BELYTSCHKO, T
    KENNEDY, JM
    SCHOEBERLE, DF
    MECHANICAL ENGINEERING, 1978, 100 (11) : 119 - 119
  • [6] Efficient ALE mesh management for 3D quasi-Eulerian problems
    Boman, R.
    Ponthot, J. -P.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 92 (10) : 857 - 890
  • [7] Synchronizing finite automata on Eulerian digraphs
    Kari, J
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2001, 2001, 2136 : 432 - 438
  • [8] An Extremal Series of Eulerian Synchronizing Automata
    Szykula, Marek
    Vorel, Vojtech
    DEVELOPMENTS IN LANGUAGE THEORY, DLT 2016, 2016, 9840 : 380 - 392
  • [9] Synchronizing finite automata on Eulerian digraphs
    Kari, J
    THEORETICAL COMPUTER SCIENCE, 2003, 295 (1-3) : 223 - 232
  • [10] Localized General Vertical Coordinates for Quasi-Eulerian Ocean Models: The Nordic Overflows Test-Case
    Bruciaferri, Diego
    Guiavarc'h, Catherine
    Hewitt, Helene T.
    Harle, James
    Almansi, Mattia
    Mathiot, Pierre
    Colombo, Pedro
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2024, 16 (03)