Ion Mobility Spectrometry/Mass Spectrometry Snapshots for Assessing the Molecular Compositions of Complex Polymeric Systems

被引:140
|
作者
Trimpin, Sarah [1 ]
Clemmer, David E. [1 ]
机构
[1] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA
关键词
D O I
10.1021/ac801573n
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The synthesis of increasingly complex polymers has created daunting, sometimes insurmountable problems for their chemical analysis. The importance is magnified by outsourcing of production and their use in consumer products, including medical devices and food storage, and therefore requires a new generation of technology for quality assurance. Here, we report capturing subtle differences at the molecular level in complex polymer mixtures nearly instantaneously using a prototype multidimensional ion mobility spectrometry/mass spectrometry spectrometry instrument. Bulk activation/fragmentation strategies reported here provide signatures of structural characteristics that permit effortless recognition of minor differences in blends and copolymers, even as structural isomers and from a quantitative perspective. The data displayed as a pictorial snapshot provide a visual pattern that is sufficiently distinctive that computer-aided pattern recognition can be used to address process control and regulatory issues.
引用
收藏
页码:9073 / 9083
页数:11
相关论文
共 50 条
  • [1] MALDI imaging mass spectrometry: molecular snapshots of biochemical systems
    Dale S Cornett
    Michelle L Reyzer
    Pierre Chaurand
    Richard M Caprioli
    Nature Methods, 2007, 4 : 828 - 833
  • [2] MALDI imaging mass spectrometry: molecular snapshots of biochemical systems
    Cornett, Dale S.
    Reyzer, Michelle L.
    Chaurand, Pierre
    Caprioli, Richard M.
    NATURE METHODS, 2007, 4 (10) : 828 - 833
  • [3] Developments in ion mobility spectrometry–mass spectrometry
    D. Collins
    M. Lee
    Analytical and Bioanalytical Chemistry, 2002, 372 : 66 - 73
  • [4] Ion Mobility Mass Spectrometry
    Barran, Perdita
    Ruotolo, Brandon
    ANALYST, 2015, 14 (20) : 6772 - 6774
  • [5] Architectural Differentiation of Linear and Cyclic Polymeric Isomers by Ion Mobility Spectrometry-Mass Spectrometry
    Hoskins, Jessica N.
    Trimpin, Sarah
    Grayson, Scott M.
    MACROMOLECULES, 2011, 44 (17) : 6915 - 6918
  • [6] Coupling trapped ion mobility spectrometry to mass spectrometry: trapped ion mobility spectrometry-time-of-flight mass spectrometry versus trapped ion mobility spectrometry-Fourier transform ion cyclotron resonance mass spectrometry
    Tose, Lilian V.
    Benigni, Paolo
    Leyva, Dennys
    Sundberg, Abigail
    Ramirez, Cesar E.
    Ridgeway, Mark E.
    Park, Melvin A.
    Romao, Wanderson
    Jaffe, Rudolf
    Fernandez-Lima, Francisco
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2018, 32 (15) : 1287 - 1295
  • [7] Ion Mobility Spectrometry: Solo or Coupled to Mass Spectrometry
    Busch, Kenneth L.
    SPECTROSCOPY, 2013, 28 (11) : 12 - +
  • [8] Developments in ion mobility spectrometry-mass spectrometry
    Collins, DC
    Lee, ML
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2002, 372 (01) : 66 - 73
  • [9] Tandem mass spectrometry and ion mobility mass spectrometry for the analysis of molecular sequence and architecture of hyperbranched glycopolymers
    Liu, Xiumin
    Cool, Lydia R.
    Lin, Kenneth
    Kasko, Andrea M.
    Wesdemiotis, Chrys
    ANALYST, 2015, 140 (04) : 1182 - 1191
  • [10] ION MOBILITY SPECTROMETRY AND ION MOBILITY SPECTROMETRY MASS-SPECTROMETRIC CHARACTERIZATION OF DIMENHYDRINATE
    LAWRENCE, AH
    NANJII, AA
    BIOMEDICAL AND ENVIRONMENTAL MASS SPECTROMETRY, 1988, 16 (1-12): : 345 - 347