Building an EDM process model by an instrumental variable approach

被引:0
|
作者
Zhou, Ming [1 ]
Chen, Zhigang [1 ]
Niu, Jufen [1 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Beijing Engn Res Ctr Monitering Construct Safety, Sch Machtron & Automobile Engn, Beijing 100044, Peoples R China
关键词
Electrical discharge machining; Modeling; Instrumental Variable; Kalman filter; PARAMETERS;
D O I
10.1016/j.procir.2013.03.087
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An electrical discharge machining (EDM) process model is critical in control system for stabilizing machining process and improving productivity. A two order AR model was firstly proposed for the process, but the deduced formulation of the model parameter estimates is proved biased. An instrumental variable approach is then proposed to correct the biased estimates. This approach was completed by two interactive Kalman filters. One filter provides instrumental variables, namely gap state estimates, through the latest estimated parameters; while the other uses the gap state estimates to recursively estimate a two order auto-regressive (AR) model parameters. The two Kalman filters by way of interactively supporting each other forms a new feasible way of online modeling an EDM process. (C) 2013 The Authors. Published by Elsevier B.V.
引用
收藏
页码:456 / 462
页数:7
相关论文
共 50 条
  • [41] An analysis of overcut variation and coupling effects of dimensional variable in EDM process
    Chiang, Hao Ning
    Wang, J. J. Junz
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2011, 55 (9-12): : 935 - 943
  • [42] A unified model-implied instrumental variable approach for structural equation modeling with mixed variables
    Shaobo Jin
    Fan Yang-Wallentin
    Kenneth A. Bollen
    [J]. Psychometrika, 2021, 86 : 564 - 594
  • [43] An analysis of overcut variation and coupling effects of dimensional variable in EDM process
    Hao Ning Chiang
    J. J. Junz Wang
    [J]. The International Journal of Advanced Manufacturing Technology, 2011, 55 : 935 - 943
  • [44] Electrothermal theory approach for numerical approximation of the μ-EDM process
    K. P. Somashekhar
    Jose Mathew
    N. Ramachandran
    [J]. The International Journal of Advanced Manufacturing Technology, 2012, 61 : 1241 - 1246
  • [45] Electrothermal theory approach for numerical approximation of the μ-EDM process
    Somashekhar, K. P.
    Mathew, Jose
    Ramachandran, N.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2012, 61 (9-12): : 1241 - 1246
  • [46] PROCESS-BASED RECONSTRUCTIVE APPROACH TO MODEL-BUILDING
    BINBASIOGLU, M
    [J]. DECISION SUPPORT SYSTEMS, 1994, 12 (02) : 97 - 113
  • [47] OPTIMAL INSTRUMENTAL VARIABLE ESTIMATES OF THE AR PARAMETERS OF AN ARMA PROCESS
    STOICA, P
    SODERSTROM, T
    FRIEDLANDER, B
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (11) : 1066 - 1074
  • [48] Instrumental variable model average with applications in Mendelian randomization
    Seng, Loraine Liping
    Liu, Ching-Ti
    Wang, Jingli
    Li, Jialiang
    [J]. STATISTICS IN MEDICINE, 2023, 42 (19) : 3547 - 3567
  • [49] An adjusted instrumental-variable model for Mendelian randomization
    Palmer, T. M.
    Burton, P. R.
    Thompson, J. R.
    Tobin, M. D.
    [J]. GENETIC EPIDEMIOLOGY, 2007, 31 (06) : 641 - 641
  • [50] Instrumental variable estimation in a probit measurement error model
    Buzas, JS
    Stefanski, LA
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 55 (01) : 47 - 62