Conductivity, structure, and thermodynamics of Y2Ti2O7-Y3NbO7 solid solutions

被引:5
|
作者
Winiarz, Piotr [1 ]
Mielewczyk-Gryn, Aleksandra [1 ]
Lilova, Kristina [2 ,3 ]
Wachowski, Sebastian [1 ]
Subramani, Tamilarasan [2 ,3 ]
Abramchuk, Mykola [2 ,3 ]
Dzik, Ewa [1 ]
Navrotsky, Alexandra [2 ,3 ]
Gazda, Maria [1 ]
机构
[1] Gdansk Univ Technol, Fac Appl Phys & Math, Narutowicza 11-12, PL-80233 Gdansk, Poland
[2] Arizona State Univ, Sch Mol Sci, Tempe, AZ 85287 USA
[3] Arizona State Univ, Ctr Mat Universe, Tempe, AZ 85287 USA
关键词
RARE-EARTH NIOBATES; ELECTRICAL-CONDUCTIVITY; DEFECT FLUORITE; PROTON CONDUCTIVITY; IONIC-CONDUCTIVITY; PYROCHLORE; TRANSITION; OPTIMIZATION; DISORDER; CRYSTAL;
D O I
10.1039/d0dt02156c
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The defect fluorite yttrium niobate Y3NbO7 and pyrochlore yttrium titanate Y2Ti2O7 solid solutions have been synthesized via a solid state synthesis route. The resulting stoichiometry of the oxides is Y2+xTi2-2xNbxO7, where x = 0 to x = 1. All of the samples were single-phase; however, for those with a predominant fluorite phase, a small amount of additional pyrochlore phase was detected. The volume of the solid solution unit cells linearly increases with increase in yttrium niobate content. The water uptake increases with (x) and the protonic defect concentration reaches almost 4.5 x 10(-3) mol mol(-1) at 300 degrees C. The calculated enthalpy of formation from oxides suggests strong stability for all of the compositions, with the values of enthalpy ranging from -84.6 to -114.3 kJ mol(-1). The total conductivity does not have a visible dependence on Y3NbO7 content. For each compound, the total conductivity is higher in wet air. Interestingly, for samples where x < 0.5, the ratio of conductivity in hydrogen to air increases with increasing temperature, while for x > 0.5, the trend is the opposite.
引用
收藏
页码:10839 / 10850
页数:12
相关论文
共 50 条
  • [21] Impact of point defects on electronic structure in Y2Ti2O7
    Xiao, Haiyan
    Zhang, Yanwen
    Weber, William J.
    [J]. RSC ADVANCES, 2012, 2 (18): : 7235 - 7240
  • [22] Electrical conductivity of MnOx-Y2O3-ZrO2 solid solutions
    Pomykalska, Daria
    Bucko, Miroslaw M.
    Rekas, Mieczyslaw
    [J]. SOLID STATE IONICS, 2010, 181 (1-2) : 48 - 52
  • [23] Ionic conductivity and relaxations in ZrO2-Y2O3 solid solutions
    Pimenov, A
    Ullrich, J
    Lunkenheimer, P
    Loidl, A
    Ruscher, CH
    [J]. SOLID STATE IONICS, 1998, 109 (1-2) : 111 - 118
  • [24] Excess conductivity in Y1-2xCaxTbxBa2Cu3O7-δ
    Han, Shun-Hui
    Lundqvist, P.
    Rapp, O.
    [J]. Physica C: Superconductivity and its Applications, 1997, 282-287 (pt 3): : 1571 - 1572
  • [25] EPITAXIAL Y1BA2CU3O7-Y/Y1-XPRXBA2CU3O7-Y HETEROSTRUCTURES
    VENKATESAN, T
    INAM, A
    DUTTA, B
    RAMESH, R
    HEGDE, MS
    WU, XD
    NAZAR, L
    CHANG, CC
    BARNER, JB
    HWANG, DM
    ROGERS, CT
    [J]. APPLIED PHYSICS LETTERS, 1990, 56 (04) : 391 - 393
  • [26] Direct synthesis of A2(Ti(1 - Y)Zry) 2O7 (A = Gd3+, Y3+) solid solutions by ball milling constituent oxides
    Moreno, Karla J.
    Rodrigo, R. Silva
    Fuentes, Antonio F.
    [J]. Journal of Alloys and Compounds, 2005, 390 (1-2): : 230 - 235
  • [27] DEFECT STRUCTURE OF Y2O3-ZRO2 SOLID SOLUTIONS
    BRATTON, RJ
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1969, 52 (04) : 213 - &
  • [28] EFFUSION AND VACUUM CONDENSATION OF THE TITANTES SC2TI2O7, Y2TI2O7, LANTHANIDES2TI2O7
    KHODOS, MY
    KRIVOSHEEV, NV
    TETERIN, GA
    ALEKSEEV, OG
    ZHURAVLEV, YF
    [J]. INORGANIC MATERIALS, 1990, 26 (03): : 484 - 488
  • [29] Total electrical conductivity and defect structure of ZrO2-CeO2-Y2O3-Gd2O3 solid solutions
    Tsoga, A
    Naoumidis, A
    Stöver, D
    [J]. SOLID STATE IONICS, 2000, 135 (1-4) : 403 - 409
  • [30] SPECTROSCOPIC PROPERTIES OF ND3+ ION IN Y2TI2O7 AND GD2TI2O7 MONOCRYSTALS
    ANTONOV, VA
    ARSENEV, PA
    PETROVA, DS
    [J]. PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1977, 41 (02): : K127 - K131