On Solutions of an Extended Nonlocal Nonlinear Schrodinger Equation in Plasmas

被引:3
|
作者
Huang, Yehui [1 ,2 ]
Jing, Hongqing [1 ]
Li, Min [1 ]
Ye, Zhenjun [1 ]
Yao, Yuqin [3 ]
机构
[1] North China Elect Power Univ, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[3] China Agr Univ, Dept Appl Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
parity-time symmetric; generalized Darboux transformation; soliton solution; rational solution; SELF-CONSISTENT SOURCES; CAMASSA-HOLM EQUATION; ROGUE WAVE; BREATHER;
D O I
10.3390/math8071099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The parity-time symmetric nonlocal nonlinear Schrodinger equation with self-consistent sources (PTNNLSESCS) is used to describe the interaction between an high-frequency electrostatic wave and an ion-acoustic wave in plasmas. In this paper, the soliton solutions, rational soliton solutions and rogue wave solutions are derived for the PTNNLSESCS via the generalized Darboux transformation. We find that the soliton solutions can exhibit the elastic interactions of different type of solutions such as antidark-antidark, dark-antidark, and dark-dark soliton pairs on a continuous wave background. Also, we discuss the degenerate case in which only one antidark or dark soliton remains. The rogue wave solution is derived in some specially chosen situations.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Breather solutions of the nonlocal nonlinear self-focusing Schrodinger equation
    Zhong, Wei-Ping
    Yang, Zhengping
    Belic, Milivoj
    Zhong, WenYe
    PHYSICS LETTERS A, 2021, 395
  • [22] Collapse in the nonlocal nonlinear Schrodinger equation
    Maucher, F.
    Skupin, S.
    Krolikowski, W.
    NONLINEARITY, 2011, 24 (07) : 1987 - 2001
  • [23] EXACT-SOLUTIONS FOR AN EXTENDED NONLINEAR SCHRODINGER-EQUATION
    POTASEK, MJ
    TABOR, M
    PHYSICS LETTERS A, 1991, 154 (09) : 449 - 452
  • [24] Integrable Nonlocal Nonlinear Schrodinger Equation
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    PHYSICAL REVIEW LETTERS, 2013, 110 (06)
  • [25] Solutions for a Schrodinger equation with a nonlocal term
    Lenzi, E. K.
    de Oliveira, B. F.
    da Silva, L. R.
    Evangelista, L. R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)
  • [26] On the integrability of the extended nonlinear Schrodinger equation and the coupled extended nonlinear Schrodinger equations
    Nakkeeran, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (21): : 3947 - 3949
  • [27] ATTRACTOR FOR THE NONLINEAR SCHRODINGER EQUATION WITH A NONLOCAL NONLINEAR TERM
    Zhu, Chaosheng
    Mu, Chunlai
    Pu, Zhilin
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2010, 16 (04) : 585 - 603
  • [28] General soliton solutions to a reverse-time nonlocal nonlinear Schrodinger equation
    Ye, Rusuo
    Zhang, Yi
    STUDIES IN APPLIED MATHEMATICS, 2020, 145 (02) : 197 - 216
  • [29] Rational soliton solutions of the nonlocal nonlinear Schrodinger equation by the KP reduction method
    Wang, Donghua
    Huang, Yehui
    Yong, Xuelin
    Zhang, Jinping
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2019, 33 (30):
  • [30] Solitary wave solutions for nonlinear fractional Schrodinger equation in Gaussian nonlocal media
    Zou, Guang-an
    Wang, Bo
    APPLIED MATHEMATICS LETTERS, 2019, 88 : 50 - 57