Modeling of Solar Energy Potential in Libya using an Artificial Neural Network Model

被引:0
|
作者
Kutucu, Hakan [1 ]
Almryad, Ayad [1 ]
机构
[1] Karabuk Univ, Dept Comp Engn, Karabuk, Turkey
关键词
Artificial neural network; solar-radiation potential; renewable energy; Libya; RADIATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work, we develop an artificial neural network model to predict the potential of solar power in Libya. We use multilayered, feed-forward, back-propagation neural networks for the mean monthly solar radiation using the data of 25 cities spread over Libya for the period of 6 years (2010-2015). Meteorological and geographical data (longitude, latitude, and altitude, month, mean sunshine duration, mean temperature, and relative humidity) are used as input to the network. The solar radiation is in the output layer of the network. The results show that the correlation coefficients between the ANN predictions and actual mean monthly global solar radiation for training and testing datasets are higher than 98%. Hence, the predictions from ANN model in locations where solar radiation data are not available has a high reliability.
引用
收藏
页码:356 / 359
页数:4
相关论文
共 50 条
  • [31] Modeling of solar energy potential in Souss-Massa area-Morocco, using intelligence Artificial Neural Networks (ANNs)
    Mensour, O. Nait
    El Ghazzani, B.
    Hlimi, B.
    Ihlal, A.
    MATERIALS & ENERGY I (2015) / MATERIALS & ENERGY II (2016), 2017, 139 : 778 - 784
  • [32] Modeling and optimization of a solar parabolic trough concentrator system using inverse artificial neural network
    May Tzuc, O.
    Bassam, A.
    Escalante Soberanis, M. A.
    Venegas-Reyes, E.
    Jaramillo, O. A.
    Ricalde, Luis J.
    Ordonez, Eduardo E.
    El Hamzaoui, Y.
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2017, 9 (01)
  • [33] An Artificial Neural Network Model for Wind Energy Estimation
    El Shahat, Adel
    Haddad, Rami J.
    Kalaani, Youakim
    IEEE SOUTHEASTCON 2015, 2015,
  • [34] Improved estimation of energy expenditure by artificial neural network modeling
    Hay, Dean Charles
    Wakayama, Akinobu
    Sakamura, Ken
    Fukashiro, Senshi
    APPLIED PHYSIOLOGY NUTRITION AND METABOLISM, 2008, 33 (06) : 1213 - 1222
  • [35] Modeling of tomato drying using artificial neural network
    Movagharnejad, Kamyar
    Nikzad, Maryam
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2007, 59 (1-2) : 78 - 85
  • [36] A global modeling approach using artificial neural network
    Goasguen, S
    Hammadi, SM
    El-Ghazaly, SM
    1999 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-4, 1999, : 153 - 156
  • [37] Modeling Malware Prediction Using Artificial Neural Network
    Anuar, Syahid
    Ahmad, Noor Azurati
    Sahibuddin, Shamsul
    Ariffin, Aswami
    Saupi, Afifah
    Zamani, Nazri Ahmad
    Jeffry, Yasmin
    Efendy, Firham
    NEW TRENDS IN INTELLIGENT SOFTWARE METHODOLOGIES, TOOLS AND TECHNIQUES (SOMET_18), 2018, 303 : 240 - 248
  • [38] Using an Artificial Neural Network for Reduced Order Modeling
    Siau, Mei Yuen
    Foo, Dominic C. Y.
    Hamid, Anuar
    CHEMICAL ENGINEERING PROGRESS, 2022, 118 (02) : 37 - 43
  • [39] Modeling of spiral inductors using artificial neural network
    Liu, T
    Zhang, WJ
    Yu, ZP
    Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 2353 - 2358
  • [40] MODELING METHOD USING COMBINED ARTIFICIAL NEURAL NETWORK
    Song, Yangpo
    Peng, Xiaoqi
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2011, 10 (02) : 189 - 198