Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber

被引:39
|
作者
Ortega-Mendoza, J. G. [1 ]
Chavez, F. [2 ]
Zaca-Moran, P. [2 ]
Felipe, C. [3 ]
Perez-Sanchez, G. F. [2 ]
Beltran-Perez, G. [1 ]
Goiz, O. [4 ]
Ramos-Garcia, R. [5 ]
机构
[1] Univ Autonoma Puebla, Fac Ciencias Fisicomatemat, Puebla 72320, Pue, Mexico
[2] Univ Autonoma Puebla, Dept Fisicoquim Mat, Puebla 72050, Pue, Mexico
[3] Inst Politecn Nacl, Ctr Interdisciplinario Invest & Estudios Medio Am, Dept Biociencias & Ingn, Mexico City 07340, DF, Mexico
[4] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Ingn Elect, Mexico City 07000, DF, Mexico
[5] Inst Nacl Opt & Elect, Dept Opt, Tonantzintla 72840, Pue, Mexico
来源
OPTICS EXPRESS | 2013年 / 21卷 / 05期
关键词
DEPOSITION; TRAP;
D O I
10.1364/OE.21.006509
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An experimental and theoretical study about selective photodeposition of metallic zinc nanoparticles onto an optical fiber end is presented. It is well known that metallic nanoparticles possess a high absorption coefficient and therefore trapping and manipulation is more challenging than dielectric particles. Here, we demonstrate a novel trapping mechanism that involves laser-induced convection flow (due to heat transfer from the zinc particles) that partially compensates both absorption and scattering forces in the vicinity of the fiber end. The gradient force is too small and plays no role on the deposition process. The interplay of these forces produces selective deposition of particles whose size is directly controlled by the laser power. In addition, a novel trapping mechanism termed convective-optical trapping is demonstrated. (c) 2013 Optical Society of America
引用
下载
收藏
页码:6509 / 6518
页数:10
相关论文
共 50 条
  • [21] BIREFRINGENCE MEASUREMENTS IN SINGLE-MODE OPTICAL FIBER
    DAY, GW
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1983, 425 : 72 - 79
  • [22] SUITABLE PARAMETERS OF SINGLE-MODE OPTICAL FIBER
    KATSUYAMA, Y
    ISHIDA, Y
    ISHIHARA, K
    MIYASHITA, T
    ELECTRONICS LETTERS, 1979, 15 (03) : 94 - 95
  • [23] MEASUREMENT TECHNIQUE FOR SINGLE-MODE OPTICAL FIBER
    NAKAZAWA, M
    AOYAMA, K
    REVIEW OF THE ELECTRICAL COMMUNICATIONS LABORATORIES, 1983, 31 (03): : 290 - 298
  • [24] SINGLE-MODE FIBER OPTICAL WAVEGUIDES.
    Grigor'yants, V.V.
    Zhabotinskiy, M.E.
    Detinich, V.A.
    Zamyatin, A.A.
    Mertsalov, S.A.
    Koreneva, N.A.
    Mertsalov, S.A.
    Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), 1982, 36-37 (02): : 84 - 87
  • [25] MECHANICAL OPTICAL SWITCH FOR SINGLE-MODE FIBER
    SHIMIZU, M
    YOSHIDA, K
    OHTA, T
    IEICE TRANSACTIONS ON COMMUNICATIONS, 1993, E76B (04) : 370 - 374
  • [26] SINGLE-MODE FIBER OPTICAL-WAVEGUIDES
    GRIGORYANTS, VV
    ZHABOTINSKIY, ME
    DETINICH, VA
    ZAMYATIN, AA
    IVANOV, GA
    KORENEVA, NA
    MERTSALOV, SA
    TELECOMMUNICATIONS AND RADIO ENGINEERING, 1982, 36-7 (02) : 84 - 87
  • [27] Single-mode electrooptic polymer optical fiber
    Welker, DJ
    Tostenrude, J
    Garvey, DW
    Canfield, BK
    Kuzyk, MG
    THIRD-ORDER NONLINEAR OPTICAL MATERIALS, 1998, 3473 : 52 - 56
  • [28] EVANESCENT AMPLIFICATION IN A SINGLE-MODE OPTICAL FIBER
    SORIN, WV
    JACKSON, KP
    SHAW, HJ
    ELECTRONICS LETTERS, 1983, 19 (20) : 820 - 822
  • [29] Fabrication of single-mode chalcogenide optical fiber
    Mossadegh, R
    Sanghera, JS
    Schaafsma, D
    Cole, BJ
    Nguyen, VQ
    Miklos, PE
    Aggarwal, ID
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 1998, 16 (02) : 214 - 217
  • [30] FULL POLYMER SINGLE-MODE OPTICAL FIBER
    BOSC, D
    TOINEN, C
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1992, 4 (07) : 749 - 750