Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber

被引:39
|
作者
Ortega-Mendoza, J. G. [1 ]
Chavez, F. [2 ]
Zaca-Moran, P. [2 ]
Felipe, C. [3 ]
Perez-Sanchez, G. F. [2 ]
Beltran-Perez, G. [1 ]
Goiz, O. [4 ]
Ramos-Garcia, R. [5 ]
机构
[1] Univ Autonoma Puebla, Fac Ciencias Fisicomatemat, Puebla 72320, Pue, Mexico
[2] Univ Autonoma Puebla, Dept Fisicoquim Mat, Puebla 72050, Pue, Mexico
[3] Inst Politecn Nacl, Ctr Interdisciplinario Invest & Estudios Medio Am, Dept Biociencias & Ingn, Mexico City 07340, DF, Mexico
[4] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Ingn Elect, Mexico City 07000, DF, Mexico
[5] Inst Nacl Opt & Elect, Dept Opt, Tonantzintla 72840, Pue, Mexico
来源
OPTICS EXPRESS | 2013年 / 21卷 / 05期
关键词
DEPOSITION; TRAP;
D O I
10.1364/OE.21.006509
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An experimental and theoretical study about selective photodeposition of metallic zinc nanoparticles onto an optical fiber end is presented. It is well known that metallic nanoparticles possess a high absorption coefficient and therefore trapping and manipulation is more challenging than dielectric particles. Here, we demonstrate a novel trapping mechanism that involves laser-induced convection flow (due to heat transfer from the zinc particles) that partially compensates both absorption and scattering forces in the vicinity of the fiber end. The gradient force is too small and plays no role on the deposition process. The interplay of these forces produces selective deposition of particles whose size is directly controlled by the laser power. In addition, a novel trapping mechanism termed convective-optical trapping is demonstrated. (c) 2013 Optical Society of America
引用
收藏
页码:6509 / 6518
页数:10
相关论文
共 50 条
  • [1] ECCENTRIC CORE SINGLE-MODE FIBER OPTICAL ATTENUATOR
    Fan, Linyong
    Jiang, Weiwei
    Zhao, Ruifeng
    Pei, Li
    Jian, Shuisheng
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2011, 53 (06) : 1236 - 1238
  • [2] TAPERS IN SINGLE-MODE OPTICAL FIBER BY CONTROLLED CORE DIFFUSION
    HARPER, JS
    BOTHAM, CP
    HORNUNG, S
    [J]. ELECTRONICS LETTERS, 1988, 24 (04) : 245 - 246
  • [3] COUPLING PROPERTIES OF A DOUBLE-CORE SINGLE-MODE OPTICAL FIBER
    SCHONER, G
    SCHIFFNER, G
    [J]. SIEMENS FORSCHUNGS-UND ENTWICKLUNGSBERICHTE-SIEMENS RESEARCH AND DEVELOPMENT REPORTS, 1981, 10 (03): : 172 - 178
  • [4] DOUBLE-CORE SINGLE-MODE OPTICAL FIBER AS DIRECTIONAL COUPLER
    SCHIFFNER, G
    SCHNEIDER, H
    SCHONER, G
    [J]. APPLIED PHYSICS, 1980, 23 (01): : 41 - 45
  • [5] Bitapered fiber coupling characteristics between single-mode single-core fiber and single-mode multicore fiber
    Yuan, Libo
    Liu, Zhihai
    Yang, Jun
    Guan, Chunying
    [J]. APPLIED OPTICS, 2008, 47 (18) : 3307 - 3312
  • [6] SINGLE-MODE OPTICAL FIBER SENSORS
    MCMILLAN, JL
    ROBERTSON, SC
    [J]. GEC JOURNAL OF RESEARCH, 1984, 2 (02): : 119 - 124
  • [7] SINGLE-MODE OPTICAL FIBER CABLE
    KATSUYAMA, Y
    MOCHIZUKI, S
    ISHIHARA, K
    ISHIDA, Y
    [J]. REVIEW OF THE ELECTRICAL COMMUNICATIONS LABORATORIES, 1979, 27 (7-8): : 507 - 514
  • [8] SINGLE-MODE OPTICAL FIBER SWITCH
    MILLER, CM
    KUMMER, RB
    METTLER, SC
    RIDGWAY, DN
    [J]. ELECTRONICS LETTERS, 1980, 16 (20) : 783 - 784
  • [9] SINGLE-MODE OPTICAL FIBER GONIOMETER
    MERMELSTEIN, MD
    BLODGETT, JA
    [J]. OPTICS LETTERS, 1992, 17 (01) : 85 - 87
  • [10] SINGLE-MODE OPTICAL FIBER CABLE
    KATSUYAMA, Y
    MOCHIZUKI, S
    ISHIHARA, K
    MIYASHITA, T
    [J]. APPLIED OPTICS, 1979, 18 (13): : 2232 - 2236