Gevrey class regularity for the time-dependent Ginzburg-Landau equations

被引:4
|
作者
Chae, DH [1 ]
Han, JM [1 ]
机构
[1] Seoul Natl Univ, Dept Math, Seoul 151742, South Korea
来源
关键词
Ginzburg-Landau equations; Gevrey class regularity;
D O I
10.1007/s000330050149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show that the strong solutions of the time-dependent Ginzburg-Landau equations in periodic domain are analytic in time with values in a Gevrey class of functions. As an immediate corollary we find that the solutions become smooth immediately after the initial time.
引用
收藏
页码:244 / 257
页数:14
相关论文
共 50 条
  • [31] Time-periodic solutions of the time-dependent Ginzburg-Landau equations of superconductivity
    Fouzi Zaouch
    [J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 2003, 54 : 905 - 918
  • [32] Asymptotics for the time dependent Ginzburg-Landau equations
    Fan, JS
    Ding, SJ
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 152 (02) : 241 - 255
  • [33] A new approach for numerical simulation of the time-dependent Ginzburg-Landau equations
    Li, Buyang
    Zhang, Zhimin
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 303 : 238 - 250
  • [34] Time-dependent Ginzburg-Landau equations for multi-gap superconductors
    Li, Minsi
    Gu, Jiahong
    Du, Long
    Zhong, Hongwei
    Zhou, Lijuan
    Chen, Qinghua
    [J]. CHINESE PHYSICS B, 2020, 29 (03)
  • [35] Time-periodic solutions of the time-dependent Ginzburg-Landau equations of superconductivity
    Zaouch, F
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (06): : 905 - 918
  • [36] Extended Time-Dependent Ginzburg-Landau Theory
    Grigorishin, Konstantin V.
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2021, 203 (3-4) : 262 - 308
  • [37] Universal time-dependent Ginzburg-Landau theory
    Kapustin, Anton
    Mrini, Luke
    [J]. PHYSICAL REVIEW B, 2023, 107 (14)
  • [38] Time-dependent Ginzburg-Landau theory and duality
    Schakel, AMJ
    [J]. TOPOLOGICAL DEFECTS AND THE NON-EQUILIBRIUM DYNAMICS OF SYMMETRY BREAKING PHASE TRANSITIONS, 2000, 549 : 213 - 238
  • [39] Uniform regularity for a 3D time-dependent Ginzburg-Landau model in superconductivity
    Fan, Jishan
    Samet, Bessem
    Zhou, Yong
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (09) : 3244 - 3248
  • [40] Simulating vortex motion in superconducting films with the time-dependent Ginzburg-Landau equations
    Coskun, E
    Kwong, MK
    [J]. NONLINEARITY, 1997, 10 (03) : 579 - 593