A Commutator Formula for Subnormal Tuples of Operators

被引:0
|
作者
Xia, Daoxing [1 ]
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
关键词
Subnormal operators; Commutator; Mosaic; Trace formula; joint point spectrum; hyponormal operator; quadrature domain; Schwarz function; QUADRATURE DOMAINS; HYPONORMAL-OPERATORS; LINEAR-ANALYSIS; TRACE FORMULA;
D O I
10.1007/s00020-015-2238-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S = (S1,..., Sk) be a pure subnormal k- tuple of operators with minimal normal extension N and defect space M. Let. j = (S* j | M)*. We prove where e(.) = PME(.)(M), E(.) is the spectral measure of N, PM is the projection to M, f is any analytic function on x(j)(k) = 1 sigma(S-j*) and h is any analytic function on x(j)(k) = 1(sigma)s(S-j). If dim M < infinity, then this commutator equals to 1/2 pi i integral(A) mu j(uj) df(<(u)over bar>)dh(u), where A = {((u) over bar,...,(u) over bark) : u = (u1,..., uk) is in the joint point spectrum of S*}, and mu j(.) is the mosaic of S-j. Besides, a similar commutator formula for a pure hyponormal operator associated with a quadrature domain is established.
引用
收藏
页码:381 / 392
页数:12
相关论文
共 50 条