Ionic current rectification in asymmetric nanofluidic devices

被引:23
|
作者
Zhou, Yue [2 ]
Liao, Xuewei [3 ]
Han, Jing [1 ]
Chen, Tingting [4 ]
Wang, Chen [1 ,2 ]
机构
[1] China Pharmaceut Univ, Sch Sci, Dept Chem, Nanjing 211198, Peoples R China
[2] Nanjing Univ, Sch Chem & Chem Engn, State Key Lab Analyt Chem Life Sci, Nanjing 210023, Peoples R China
[3] Nanjing Normal Univ, Testing & Anal Ctr, Nanjing 210046, Peoples R China
[4] Nantong Univ, Sch Chem & Chem Engn, Nantong 226019, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanofluidics; Ionic current rectification (ICR); Mass transport; Electric double layer (EDL); SOLID-STATE NANOPORES; REACTION-KINETICS; NANOCHANNEL ARRAY; TRANSPORT; ENERGY; HYBRID; MOLECULES; DIFFUSION; INSIGHTS; CHANNEL;
D O I
10.1016/j.cclet.2020.05.033
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent decades, the properties and behaviors of nanofluidic devices have been widely explored in varied subjects such as engineering, physics, chemistry, and biology. Among the rich properties of nanofluidics, ionic current rectification (ICR) is a unique phenomenon arising from asymmetric nanofluidic devices with electric double layer (EDL) overlapped. The ICR property is especially useful in applications including energy conversion, mass separation, sea water purification and bioanalysis. In this review, the ICR property in nanofluidics as well as the underlying mechanism is demonstrated. The influencing factors concerning to the ICR property are systematically summarized. The asymmetric geometry as well as the charge distribution is in charge of the ICR behavior occurring in nanofluidic devices. This review is aimed at readers who are interested in the fundamentals of mass transport in nanofluidics in general, as well as those who are willing to apply nanofluidics in various research fields. (C) 2020 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:2414 / 2422
页数:9
相关论文
共 50 条
  • [31] Nanofluidic Ionic Memristors
    Xu, Guoheng
    Zhang, Miliang
    Mei, Tingting
    Liu, Wenchao
    Wang, Li
    Xiao, Kai
    ACS NANO, 2024, 18 (30) : 19423 - 19442
  • [32] Rectification of a Modified Nanofluidic Diode Dependent on the pH
    Nguyen, Gael
    Siwy, Zuzanna
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 602A - 602A
  • [33] Tuning ion current rectification in asymmetric nanopores by signal mixing
    Kalman, E.
    Healy, K.
    Siwy, Z. S.
    EPL, 2007, 78 (02)
  • [34] Nanofluidic devices and their applications
    Abgrall, Patirick
    Nguyen, Nam Trung
    ANALYTICAL CHEMISTRY, 2008, 80 (07) : 2326 - 2341
  • [35] IONIC CURRENT RECTIFICATION THROUGH pH-REGULATED NANOPORES
    Chander, M.
    Kumar, R.
    Kumar, S.
    Kumar, N.
    Chakarvarti, S. K.
    DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2018, 13 (01) : 13 - 21
  • [36] Nonohmic Ionic Conductivity and Bulk Current Rectification in Nanoparticle Superlattices
    Bonoli, Santiago F.
    Missoni, Leandro L.
    Perez Sirkin, Yamila A.
    Tagliazucchi, Mario
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (25): : 10723 - 10732
  • [37] Rectification of ionic current in nanopores functionalized with bipolar polyelectrolyte brushes
    Lin, Chih-Yuan
    Hsu, Jyh-Ping
    Yeh, Li-Hsien
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 258 : 1223 - 1229
  • [38] Beyond the Tradeoff: Dynamic Selectivity in Ionic Transport and Current Rectification
    Poggioli, Anthony R.
    Siria, Alessandro
    Bocquet, Lyderic
    JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (05): : 1171 - 1185
  • [39] Effects of Electroosmotic Flow on Ionic Current Rectification in Conical Nanopores
    Ai, Ye
    Zhang, Mingkan
    Joo, Sang W.
    Cheney, Marcos A.
    Qian, Shizhi
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (09): : 3883 - 3890
  • [40] Influence of the Dielectric Constant on the Ionic Current Rectification of Bipolar Nanopores
    Cordoba, Andres
    Montes de Oca, Joan Manuel
    Darling, Seth B.
    de Pablo, Juan J.
    ACS NANO, 2024, 18 (19) : 12569 - 12579