Evacuation of large urban structures, such as campus buildings, arenas, or stadiums, is of prime interest to emergency responders and planners. Although there is a large body of work on evacuation algorithms and their application, most of these methods are impractical to use in real-world scenarios (nonreal-time, for instance) or have difficulty handling scenarios with dynamically changing conditions. Our overall goal in this work is toward developing computer visualizations and real-time visual analytic tools for evacuations of large groups of buildings, and in the long term, integrate this with the street networks in the surrounding areas. A key aspect of our system is to provide situational awareness and decision support to first responders and emergency planners. In our earlier work, we demonstrated an evacuation system that employed a modified variant of a heuristic-based evacuation algorithm, which (11 facilitated real-time complex user interaction with first responder teams, in response to information received during the emergency; (2) automatically supported visual reporting tools for spatial occupancy, temporal cues, and procedural recommendations; and (3) multi-scale building models, heuristic evacuation models, and unique graph manipulation techniques for producing near real-time situational awareness. The system was tested in collaboration with our campus police and safety personnel, via a tabletop exercise consisting of three different scenarios. In this work, we have redesigned the system to be able to handle larger groups of buildings, in order to move toward a full-campus evacuation system. We demonstrate an evacuation simulation involving 22 buildings in the University of North Carolina, Charlotte campus. Second, the implementation has been redesigned as a WebGL application, facilitating easy dissemination and use by stakeholders.