Data Needs in Oncology: "Making Sense of The Big Data Soup"

被引:0
|
作者
DeMartino, Jessica K.
Larsen, Jonathan K.
机构
关键词
PATIENT-REPORTED OUTCOMES; MEDICARE COVERAGE; CANCER;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Rising health care costs and continued concerns about safety, efficacy, and quality have resulted in the demand for more data and evidence by payors, regulators, providers, and patients alike. Stakeholders with different objectives for the use of data are driving the need for more and "better" data. It is important for organizations to not only understand how to handle and collect data but also translate it into actionable information that can help transform health care delivery. Appropriate use of data can lead to reduced health care costs and increased value to all stakeholders. In June 2012, NCCN assembled a work group composed of thought leaders from NCCN Member Institutions and other organizations to identify and examine the challenges of data generation, collection, and application for clinical, regulatory, and coverage decision-making. The NCCN Data Needs Work Group identified 4 main areas for consideration: data sources, patient-derived data, payorcollected data, and regulatory policy toward data generation and use.
引用
收藏
页码:S1 / S12
页数:12
相关论文
共 50 条
  • [21] Hands-on: Making Sense of big Data, Machine Learning, and Modeling
    Brennan, Jameson R.
    Menendez, Hector M.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2022, 100 : 33 - 33
  • [22] Elastic Stack in Action for Smart Cities: Making Sense of Big Data
    Talas, Andrei
    Pop, Florin
    Neagu, Gabriel
    [J]. 2017 13TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP), 2017, : 469 - 476
  • [23] Big data in radiation oncology
    Huilgol, Nagraj
    [J]. JOURNAL OF CANCER RESEARCH AND THERAPEUTICS, 2016, 12 (03) : 1107 - 1108
  • [24] Big Data in Radiation Oncology
    Benedict, Stanley
    [J]. MEDICAL PHYSICS, 2016, 43 (06) : 3842 - 3842
  • [25] THE RISE OF BIG DATA IN ONCOLOGY
    Fessele, Kristen L.
    [J]. SEMINARS IN ONCOLOGY NURSING, 2018, 34 (02) : 168 - 176
  • [26] Essay: Making Data, Making Sense
    Haque, Usman
    [J]. A + U-ARCHITECTURE AND URBANISM, 2014, (530): : 110 - 113
  • [27] Making sense of big data in health research: Towards an EU action plan
    Auffray, Charles
    Balling, Rudi
    Barroso, Ines
    Bencze, Laszlo
    Benson, Mikael
    Bergeron, Jay
    Bernal-Delgado, Enrique
    Blomberg, Niklas
    Bock, Christoph
    Conesa, Ana
    Del Signore, Susanna
    Delogne, Christophe
    Devilee, Peter
    Di Meglio, Alberto
    Eijkemans, Marinus
    Flicek, Paul
    Graf, Norbert
    Grimm, Vera
    Guchelaar, Henk-Jan
    Guo, Yi-Ke
    Gut, Ivo Glynne
    Hanbury, Allan
    Hanif, Shahid
    Hilgers, Ralf-Dieter
    Honrado, Angel
    Hose, D. Rod
    Houwing-Duistermaat, Jeanine
    Hubbard, Tim
    Janacek, Sophie Helen
    Karanikas, Haralampos
    Kievits, Tim
    Kohler, Manfred
    Kremer, Andreas
    Lanfear, Jerry
    Lengauer, Thomas
    Maes, Edith
    Meert, Theo
    Mueller, Werner
    Nickel, Dorthe
    Oledzki, Peter
    Pedersen, Bertrand
    Petkovic, Milan
    Pliakos, Konstantinos
    Rattray, Magnus
    Redon i Mas, Josep
    Schneider, Reinhard
    Sengstag, Thierry
    Serra-Picamal, Xavier
    Spek, Wouter
    Vaas, Lea A. I.
    [J]. GENOME MEDICINE, 2016, 8
  • [28] Making sense from Big RDF Data: OUSAF for measuring ontology usage
    Ashraf, Jamshaid
    Hussain, Omar Khadeer
    Hussain, Farookh Khadeer
    [J]. SOFTWARE-PRACTICE & EXPERIENCE, 2015, 45 (08): : 1051 - 1071
  • [29] Making sense of big data in health research: Towards an EU action plan
    Charles Auffray
    Rudi Balling
    Inês Barroso
    László Bencze
    Mikael Benson
    Jay Bergeron
    Enrique Bernal-Delgado
    Niklas Blomberg
    Christoph Bock
    Ana Conesa
    Susanna Del Signore
    Christophe Delogne
    Peter Devilee
    Alberto Di Meglio
    Marinus Eijkemans
    Paul Flicek
    Norbert Graf
    Vera Grimm
    Henk-Jan Guchelaar
    Yi-Ke Guo
    Ivo Glynne Gut
    Allan Hanbury
    Shahid Hanif
    Ralf-Dieter Hilgers
    Ángel Honrado
    D. Rod Hose
    Jeanine Houwing-Duistermaat
    Tim Hubbard
    Sophie Helen Janacek
    Haralampos Karanikas
    Tim Kievits
    Manfred Kohler
    Andreas Kremer
    Jerry Lanfear
    Thomas Lengauer
    Edith Maes
    Theo Meert
    Werner Müller
    Dörthe Nickel
    Peter Oledzki
    Bertrand Pedersen
    Milan Petkovic
    Konstantinos Pliakos
    Magnus Rattray
    Josep Redón i Màs
    Reinhard Schneider
    Thierry Sengstag
    Xavier Serra-Picamal
    Wouter Spek
    Lea A. I. Vaas
    [J]. Genome Medicine, 8
  • [30] Hands-on: Making Sense of big Data, Machine Learning, and Modeling.
    Brennan, Jameson R.
    Menendez, Hector M.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2022, 100 : 33 - 33