Statistical properties of random asymmetrical neural networks

被引:0
|
作者
Miranda, EN
Zanette, DH
Reidel, D
机构
[1] INST BALSEIRO,RA-8400 SAN CARLOS BARILO,ARGENTINA
[2] CTR ATOM BARILOCHE,RA-8400 SAN CARLOS BARILO,ARGENTINA
来源
PHYSICA A | 1997年 / 241卷 / 3-4期
关键词
neural networks; nonequilibrium phase transitions;
D O I
10.1016/S0378-4371(97)00178-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A fully connected set of formal neurons that has not been subject to any training algorithm is studied. The thresholds and couplings are random variables chosen from Gaussian distributions. The dynamics of the model can be studied within a mean field approximation. Our results show a change of behaviour from a monostable to a bistable regime as the parameters are modified. A nonequilibrium potential is introduced to describe the model, and an analogy with a usual phase transition can be drawn. This analogy suggests using a thermodynamical approach to study the problem. Both the dynamical and the thermodynamical approaches give the same phase diagram for the model. The mean value of the threshold controls the order of the phase transition between the monostable and bistable regimes.
引用
收藏
页码:481 / 492
页数:12
相关论文
共 50 条
  • [21] STABLE RANDOM NEURAL NETWORKS
    GELENBE, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1990, 310 (03): : 177 - 180
  • [22] RANDOM MATRICES AND NEURAL NETWORKS
    LUCA, AD
    RICCIARD.LM
    VASUDEVA.R
    KYBERNETIK, 1970, 6 (05): : 163 - +
  • [23] On the statistical properties of least-square estimators of layered neural networks
    Kitahara, M., 1600, John Wiley and Sons Inc. (35):
  • [24] CHAOS IN RANDOM NEURAL NETWORKS
    SOMPOLINSKY, H
    CRISANTI, A
    SOMMERS, HJ
    PHYSICAL REVIEW LETTERS, 1988, 61 (03) : 259 - 262
  • [25] STATISTICAL THERMODYNAMICS OF RANDOM NETWORKS.
    Flory, P.J.
    Proceedings of The Royal Society of London, Series A: Mathematical and Physical Sciences, 1976, 351 (1666): : 351 - 380
  • [26] Statistical Properties of the Random PSD
    Van Baren, Philip
    SOUND AND VIBRATION, 2012, 46 (03): : 12 - 13
  • [27] Clustering in neural networks with heterogeneous and asymmetrical coupling strengths
    Li, YX
    PHYSICA D-NONLINEAR PHENOMENA, 2003, 180 (3-4) : 210 - 234
  • [28] Statistical modelling of mechanical properties of microalloyed steels by application of artificial neural networks
    Dumortier, C
    Lehert, P
    Krupa, P
    Charlier, A
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MICROALLOYING IN STEELS, 1998, 284-2 : 393 - 400
  • [29] Learning physical properties of anomalous random walks using graph neural networks
    Verdier, Hippolyte
    Duval, Maxime
    Laurent, Francois
    Casse, Alhassan
    Vestergaard, Christian L.
    Masson, Jean-Baptiste
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (23)
  • [30] Statistical Analyses of a Class of Random Cyclooctatetraene Chain Networks with Respect to Several Topological Properties
    Tao, Chen
    Tang, Shengjun
    Geng, Xianya
    SYMMETRY-BASEL, 2023, 15 (11):