Improved rate capability of Si-C composite anodes by boron doping for lithium-ion batteries

被引:75
|
作者
Yi, Ran [1 ]
Zai, Jiantao [1 ]
Dai, Fang [1 ]
Gordin, Mikhail L. [1 ]
Wang, Donghai [1 ]
机构
[1] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
Boron doping; Si-C composite; Rate capability; Anode; Lithium-ion battery; SILICON; CONDUCTIVITY; PERFORMANCE;
D O I
10.1016/j.elecom.2013.09.004
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We report a novel strategy to enhance the rate capability of Si-c composite by facile boron doping. Boron doping was confirmed by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The boron-doped Si-C composite shows much improved rate capability, delivering a capacity of 575 mAh/g at 6.4 A/g without any external carbon additive, 80% higher than that of undoped composite. Electrochemical impedance spectroscopy (EIS) measurement shows that boron-doped Si-C composite has lower charge transfer resistance, which helps improve its rate capability. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 32
页数:4
相关论文
共 50 条
  • [21] Novel mesoporous Si@C microspheres as anodes for lithium-ion batteries
    Ma, Xiaomei
    Liu, Mingxian
    Gan, Lihua
    Tripathi, Pranav K.
    Zhao, Yunhui
    Zhu, Dazhang
    Xu, Zijie
    Chen, Longwu
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (09) : 4135 - 4142
  • [22] Preceramic polymer derived carbon encapsulated Si-C hybrids for lithium-ion battery anodes
    Bishoyi, Smita S.
    Mohanta, Tandra R.
    Behera, Shantanu K.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1002
  • [23] Nanostructured SnO2/C composite anodes in lithium-ion batteries
    Hsieh, Chien-Te
    Chen, Jin-Ming
    Huang, Hsiu-Wen
    [J]. International Journal of Nanoscience, Vol 2, Nos 4 and 5, 2003, 2 (4-5): : 299 - 306
  • [24] Low Surface Area Si Alloy/Ionomer Composite Anodes for Lithium-Ion Batteries
    Zhao, Xiuyun
    Dunlap, R. A.
    Obrovac, M. N.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (14) : A1976 - A1980
  • [25] Aqueous lithium-ion batteries with niobium tungsten oxide anodes for superior volumetric and rate capability
    Lakhnot, Aniruddha S.
    Gupta, Tushar
    Singh, Yashpal
    Hundekar, Prateek
    Jain, Rishabh
    Han, Fudong
    Koratkar, Nikhil
    [J]. ENERGY STORAGE MATERIALS, 2020, 27 : 506 - 513
  • [26] Electrochemical Amorphization As a Method to Increase the Rate Capability of Crystalline Silicon Anodes for Lithium-Ion Batteries
    Li, G. V.
    Astrova, E. V.
    Rumyantsev, A. M.
    [J]. TECHNICAL PHYSICS LETTERS, 2019, 45 (11) : 1131 - 1135
  • [27] Electrochemical Amorphization As a Method to Increase the Rate Capability of Crystalline Silicon Anodes for Lithium-Ion Batteries
    G. V. Li
    E. V. Astrova
    A. M. Rumyantsev
    [J]. Technical Physics Letters, 2019, 45 : 1131 - 1135
  • [28] Polyethyleneimine/Polyacrylamide Composite as Cross-linkable Aqueous Binder for Si/C Anodes of Lithium-ion Batteries
    Deng, Pan
    Chen, Cheng
    Zhang, Ling-zhi
    [J]. ACTA POLYMERICA SINICA, 2021, 52 (11): : 1473 - 1480
  • [29] Polysilane/Acenaphthylene Blends Toward Si-O-C Composite Anodes for Rechargeable Lithium-Ion Batteries
    Fukui, Hiroshi
    Ohsuka, Hisashi
    Hino, Takakazu
    Kanamura, Kiyoshi
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (05) : A550 - A555
  • [30] Three dimensional network Si-C composite coating constructed by porous skeletons as an integrated anode for lithium-ion batteries
    Fu, Yuge
    Yang, Qi
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (17) : 15042 - 15051