The minimum spanning tree problem with fuzzy costs

被引:24
|
作者
Janiak, Adam [2 ]
Kasperski, Adam [1 ]
机构
[1] Wroclaw Univ Technol, Inst Ind Engn & Management, PL-50370 Wroclaw, Poland
[2] Wroclaw Univ Technol, Inst Engn Cybernet, PL-50370 Wroclaw, Poland
关键词
spanning tree; fuzzy interval; fuzzy optimization; possibility theory;
D O I
10.1007/s10700-008-9030-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper the minimum spanning tree problem in a given connected graph is considered. It is assumed that the edge costs are not precisely known and they are specified as fuzzy intervals. Possibility theory is applied to characterize the optimality of edges of the graph and to choose a spanning tree under fuzzy costs.
引用
收藏
页码:105 / 118
页数:14
相关论文
共 50 条
  • [41] The minimum-area spanning tree problem
    Carmi, P
    Katz, MJ
    Mitchell, JSB
    [J]. ALGORITHMS AND DATA STRUCTURES, PROCEEDINGS, 2005, 3608 : 195 - 204
  • [42] The Minimum-Area Spanning Tree problem
    Carmi, Paz
    Katz, Matthew J.
    Mitchell, Joseph S. B.
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2006, 35 (03): : 218 - 225
  • [43] On the complexity of the bilevel minimum spanning tree problem
    Buchheim, Christoph
    Henke, Dorothee
    Hommelsheim, Felix
    [J]. NETWORKS, 2022, 80 (03) : 338 - 355
  • [44] RAMP for the capacitated minimum spanning tree problem
    Cesar Rego
    Frank Mathew
    Fred Glover
    [J]. Annals of Operations Research, 2010, 181 : 661 - 681
  • [45] Stochastic quadratic minimum spanning tree problem
    Lu, Mei
    Gao, Jinwu
    [J]. Proceedings of the First International Conference on Information and Management Sciences, 2002, 1 : 179 - 183
  • [46] Parallel algorithms for minimum spanning tree problem
    Ahrabian, H
    Nowzari-Dalini, A
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2002, 79 (04) : 441 - 448
  • [47] The Minimum Centroid Branch Spanning Tree Problem
    Hao Lin
    Cheng He
    [J]. Journal of the Operations Research Society of China, 2024, 12 : 528 - 539
  • [48] ON THE VALUE OF A RANDOM MINIMUM SPANNING TREE PROBLEM
    FRIEZE, AM
    [J]. DISCRETE APPLIED MATHEMATICS, 1985, 10 (01) : 47 - 56
  • [49] The Minimum Centroid Branch Spanning Tree Problem
    Lin, Hao
    He, Cheng
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024, 12 (02) : 528 - 539
  • [50] PROGRAM SOLVES MINIMUM SPANNING TREE PROBLEM
    GUPTA, SM
    [J]. INDUSTRIAL ENGINEERING, 1984, 16 (04): : 20 - &