On the mathematical model of Rabies by using the fractional Caputo-Fabrizio derivative

被引:42
|
作者
Aydogan, Seher Melike [1 ]
Baleanu, Dumitru [2 ,3 ]
Mohammadi, Hakimeh [4 ]
Rezapour, Shahram [5 ,6 ,7 ]
机构
[1] Istanbul Tech Univ, Dept Math, Oretmenler Cad 14, TR-06530 Istanbul, Turkey
[2] Cankaya Univ, Dept Math, Ankara, Turkey
[3] Inst Space Sci, Bucharest, Romania
[4] Islamic Azad Univ, Dept Math, Miandoab Branch, Miandoab, Iran
[5] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[6] Duy Tan Univ, Fac Nat Sci, Da Nang 550000, Vietnam
[7] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
关键词
Adomian decomposition method; Fixed point; Numerical simulation; Rabies model; The Caputo-Fabrizio fractional derivative; ADOMIAN DECOMPOSITION; ECONOMICS; PREVENTION;
D O I
10.1186/s13662-020-02798-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the fractional Caputo-Fabrizio derivative, we investigate a new version of the mathematical model of Rabies disease. Using fixed point results, we prove the existence of a unique solution. We calculate the equilibrium points and check the stability of solutions. We solve the equation by combining the Laplace transform and Adomian decomposition method. In numerical results, we investigate the effect of coefficients on the number of infected groups. We also examine the effect of derivation orders on the behavior of functions and make a comparison between the results of the integer-order derivative and the Caputo and Caputo-Fabrizio fractional-order derivatives.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] PROPERTIES OF THE CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE AND ITS DISTRIBUTIONAL SETTINGS
    Atanackovic, Teodor M.
    Pilipovic, Stevan
    Zorica, Dusan
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (01) : 29 - 44
  • [32] On Fractional Diffusion Equation with Caputo-Fabrizio Derivative and Memory Term
    Binh Duy Ho
    Van Kim Ho Thi
    Long Le Dinh
    Nguyen Hoang Luc
    Phuong Nguyen
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021
  • [33] New Numerical Aspects of Caputo-Fabrizio Fractional Derivative Operator
    Qureshi, Sania
    Rangaig, Norodin A.
    Baleanu, Dumitru
    [J]. MATHEMATICS, 2019, 7 (04)
  • [34] Modeling and analysis of fractional order Buck converter using Caputo-Fabrizio derivative
    Yang, Ruocen
    Liao, Xiaozhong
    Lin, Da
    Dong, Lei
    [J]. ENERGY REPORTS, 2020, 6 : 440 - 445
  • [35] Analysis of SIRC model for influenza A with Caputo-Fabrizio derivative
    Hamidane, Nacira
    Derradji, Lylia Salah
    Aouchal, Sofiane
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 1239 - 1259
  • [36] Existence theory and numerical solutions to smoking model under Caputo-Fabrizio fractional derivative
    Khan, Sajjad Ali
    Shah, Kamal
    Zaman, Gul
    Jarad, Fahd
    [J]. CHAOS, 2019, 29 (01)
  • [37] On a nonlinear fractional order model of dengue fever disease under Caputo-Fabrizio derivative
    Shah, Kamal
    Jarad, Fahd
    Abdeljawad, Thabet
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (04) : 2305 - 2313
  • [38] A fractional Bank competition model in Caputo-Fabrizio derivative through Newton polynomial approach
    Khan, Yasir
    Khan, Muhammad Altaf
    Fatmawati
    Faraz, Naeem
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (01) : 711 - 718
  • [39] New discretization of Caputo-Fabrizio derivative
    Akman, Tugba
    Yildiz, Burak
    Baleanu, Dumitru
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 3307 - 3333
  • [40] Fractional speeded up robust features detector with the Caputo-Fabrizio derivative
    Lavin-Delgado, J. E.
    Solis-Perez, J. E.
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (43-44) : 32957 - 32972