On the quadratic reciprocity law

被引:0
|
作者
Malik, Kifah Abbas [1 ]
Al Saffar, Najlae Falah Hameed [1 ]
机构
[1] Univ Kufa, Fac Comp Sci & Math, Dept Math, Kufa, Iraq
关键词
Law of quadratic reciprocity; Quadratic residuosity problem and Goldwasser micali randomized public key cryptosystem;
D O I
10.1080/09720529.2020.1811449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. It noticed by Euler and Legendre and proved by Gauss. In this paper, we will study the quadratic reciprocity law theorem where the Euler Criterion and Legendre Symbol are involved. The application of quadratic reciprocity law theorem is given in cryptography, where the Quadratic Residuosity Problem considered as a hard mathematical problem for Goldwasser Micali Randomized Public Key Cryptosystem. This system will be discussed with the details in this paper.
引用
收藏
页码:1777 / 1790
页数:14
相关论文
共 50 条
  • [31] CASSONS INVARIANT AND QUADRATIC RECIPROCITY
    KRONHEIMER, PB
    LARSEN, MJ
    SCHERK, J
    TOPOLOGY, 1991, 30 (03) : 335 - 338
  • [32] QUADRATIC RECIPROCITY VIA RESULTANTS
    Hambleton, S.
    Scharaschkin, V.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (06) : 1413 - 1417
  • [33] Selmer groups and quadratic reciprocity
    F. Lemmermeyer
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2006, 76 : 279 - 293
  • [34] QUADRATIC FORMS AND BIQUADRATIC RECIPROCITY
    BROWN, E
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1972, 253 : 214 - &
  • [35] PELL CONICS AND QUADRATIC RECIPROCITY
    Hambleton, S.
    Scharaschkin, V.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (01) : 91 - 96
  • [36] Selmer groups and quadratic reciprocity
    Lemmermeyer, F.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2006, 76 (1): : 279 - 293
  • [37] SHORT PROOF OF QUADRATIC RECIPROCITY
    FRAME, JS
    AMERICAN MATHEMATICAL MONTHLY, 1978, 85 (10): : 818 - 822
  • [38] Quadratic reciprocity in a finite group
    Duke, W
    Hopkins, K
    AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (03): : 251 - 256
  • [39] Mechanical proof of quadratic reciprocity
    Russinoff, David M.
    Journal of Automated Reasoning, 1992, 8 (01): : 3 - 21
  • [40] Generation method of GPS L1C codes based on quadratic reciprocity law
    Lu, Hui
    Niu, Ruiyao
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2013, 24 (02) : 189 - 195