Bounds for the Z-spectral radius of nonnegative tensors

被引:19
|
作者
He, Jun [1 ]
Liu, Yan-Min [1 ]
Ke, Hua [1 ]
Tian, Jun-Kang [1 ]
Li, Xiang [1 ]
机构
[1] Zunyi Normal Coll, Sch Math, Zunyi 563002, Guizhou, Peoples R China
来源
SPRINGERPLUS | 2016年 / 5卷
关键词
Bound; Nonnegative tensor; Z-eigenvalue; PERRON-FROBENIUS THEOREM; LARGEST EIGENVALUE;
D O I
10.1186/s40064-016-3338-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we have proposed some new upper bounds for the largest Z-eigenvalue of an irreducible weakly symmetric and nonnegative tensor, which improve the known upper bounds obtained in Chang et al. (Linear Algebra Appl 438: 4166-4182, 2013), Song and Qi (SIAM J Matrix Anal Appl 34: 1581-1595, 2013), He and Huang (Appl Math Lett 38: 110-114, 2014), Li et al. (J Comput Anal Appl 483: 182-199, 2015), He (J Comput Anal Appl 20: 1290-1301, 2016).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Brauer Upper Bound for the Z-Spectral Radius of Nonnegative Tensors
    Jun HE
    Hua KE
    Yanmin LIU
    Junkang TIAN
    [J]. Journal of Mathematical Research with Applications, 2019, 39 (04) : 353 - 360
  • [2] BRAUER-TYPE UPPER BOUNDS FOR Z-SPECTRAL RADIUS OF WEAKLY SYMMETRIC NONNEGATIVE TENSORS
    Wang, Gang
    Wang, Yanan
    Zhang, Yuan
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (04): : 1105 - 1116
  • [3] BOUNDS FOR THE SPECTRAL RADIUS OF NONNEGATIVE TENSORS
    Li, Chaoqian
    Wang, Yaqiang
    Yi, Jieyi
    Li, Yaotang
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2016, 12 (03) : 975 - 990
  • [4] An upper bound for the Z-spectral radius of adjacency tensors
    Zhi-Yong Wu
    Jun He
    Yan-Min Liu
    Jun-Kang Tian
    [J]. Journal of Inequalities and Applications, 2018
  • [5] An upper bound for the Z-spectral radius of adjacency tensors
    Wu, Zhi-Yong
    He, Jun
    Liu, Yan-Min
    Tian, Jun-Kang
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [6] New bounds for the spectral radius for nonnegative tensors
    Li, Lixia
    Li, Chaoqian
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [7] New bounds for the spectral radius for nonnegative tensors
    Lixia Li
    Chaoqian Li
    [J]. Journal of Inequalities and Applications, 2015
  • [8] Some bounds for the spectral radius of nonnegative tensors
    Wen Li
    Michael K. Ng
    [J]. Numerische Mathematik, 2015, 130 : 315 - 335
  • [9] Some bounds for the spectral radius of nonnegative tensors
    Li, Wen
    Ng, Michael K.
    [J]. NUMERISCHE MATHEMATIK, 2015, 130 (02) : 315 - 335
  • [10] The bounds on spectral radius of nonnegative tensors via general product of tensors
    Deng, Chunli
    Yao, Hongmei
    Bu, Changjiang
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 602 : 206 - 215