On 3-Regular Partitions in 3-Colors

被引:5
|
作者
Gireesh, D. S. [1 ]
Naika, M. S. Mahadeva [2 ]
机构
[1] MS Ramaiah Univ Appl Sci, Dept Math, Bengaluru 560058, Karnataka, India
[2] Bangalore Univ, Dept Math, Cent Coll Campus, Bengaluru 560001, Karnataka, India
来源
关键词
Partitions; 3-colors; 3-regular partitions; congruences;
D O I
10.1007/s13226-019-0312-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider p({3,3})(n), the number of 3-regular partitions in 3-colors. We find the generating functions for p({3,3})(n) and deduce congruences modulo large powers of 3. We also find the generating functions and congruences for linear combination of p(3)(n) (the number of partitions of n in 3-colors) by finding the relation connecting p(3)(n) and p({3,3})(n). As an application, we find finite discrete convolution of p({3,1})(n) and p({3,2})(n).
引用
收藏
页码:137 / 148
页数:12
相关论文
共 50 条
  • [21] On 3-regular digraphs of girth 4
    Ngo Dac Tan
    DISCRETE MATHEMATICS, 2020, 343 (0I)
  • [22] 3-REGULAR PARTS OF 4-REGULAR GRAPHS
    TASHKINOV, VA
    MATHEMATICAL NOTES, 1984, 36 (1-2) : 612 - 623
  • [23] 3-REGULAR PATH PAIRABLE GRAPHS
    FAUDREE, RJ
    GYARFAS, A
    LEHEL, J
    GRAPHS AND COMBINATORICS, 1992, 8 (01) : 45 - 52
  • [24] An identity involving 3-regular graphs
    Woodall, DR
    DISCRETE MATHEMATICS, 1996, 152 (1-3) : 287 - 293
  • [25] 3-regular hypergraphs that are decomposable and threshold
    Francel, MA
    John, DJ
    ARS COMBINATORIA, 2003, 67 : 3 - 26
  • [26] On Rewriting of Planar 3-Regular Graphs
    Tomita, Kohji
    Ikeda, Yasuwo
    Hosono, Chiharu
    INFORMATICS ENGINEERING AND INFORMATION SCIENCE, PT III, 2011, 253 : 346 - +
  • [27] 3-REGULAR SUBGRAPHS OF 4-REGULAR GRAPHS
    CHVATAL, V
    FLEISCHNER, H
    SHEEHAN, J
    THOMASSEN, C
    JOURNAL OF GRAPH THEORY, 1979, 3 (04) : 371 - 386
  • [28] ISOMORPHIC FACTORIZATION OF REGULAR GRAPHS AND 3-REGULAR MULTIGRAPHS
    ELLINGHAM, MN
    WORMALD, NC
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1988, 37 : 14 - 24
  • [29] An identity involving 3-regular graphs
    Department of Mathematics, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
    Discrete Math, 1-3 (287-293):
  • [30] ON TRIBONACCI NUMBERS AND 3-REGULAR COMPOSITIONS
    Robbins, Neville
    FIBONACCI QUARTERLY, 2014, 52 (01): : 16 - 19