Bopp-Podolsky black holes and the no-hair theorem

被引:27
|
作者
Cuzinatto, R. R. [1 ,2 ]
de Melo, C. A. M. [2 ,3 ]
Medeiros, L. G. [3 ,4 ]
Pimentel, B. M. [3 ]
Pompeia, P. J. [5 ]
机构
[1] McGill Univ, Dept Phys, Ernest Rutherford Phys Bldg,3600 Univ St, Montreal, PQ H3A 2T8, Canada
[2] Univ Fed Alfenas, Inst Ciencia & Tecnol, Rod Jose Aurelio Vilela,BR 267,Km 533,11999, BR-37701970 Pocos De Caldas, MG, Brazil
[3] Univ Estadual Paulista, Inst Fis Teor, Rua Bento Teobaldo Ferraz 271 Bloco 2,POB 70532-2, BR-01156970 Sao Paulo, SP, Brazil
[4] Univ Fed Rio Grande do Norte, Escola Ciencia & Tecnol, Campus Univ S-N, BR-59078970 Natal, RN, Brazil
[5] Inst Tecnol Aeronaut, Dept Fis, Praca Mal Eduardo Gomes 50, BR-12228900 Sao Jose Dos Campos, SP, Brazil
来源
EUROPEAN PHYSICAL JOURNAL C | 2018年 / 78卷 / 01期
关键词
EINSTEIN-PROCA MODEL; SELF-INTERACTION; BARYON NUMBER; SCALAR FIELD; ELECTRODYNAMICS; PARTICLE; MASS; NONEXISTENCE; GRAVITATION; QUANTUM;
D O I
10.1140/epjc/s10052-018-5525-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Bopp-Podolsky electrodynamics is generalized to curved space-times. The equations of motion are written for the case of static spherically symmetric black holes and their exterior solutions are analyzed using Bekenstein's method. It is shown that the solutions split up into two parts, namely a non-homogeneous (asymptotically massless) regime and a homogeneous (asymptotically massive) sector which is null outside the event horizon. In addition, in the simplest approach to Bopp-Podolsky black holes, the non-homogeneous solutions are found to be Maxwell's solutions leading to a Reissner-Nordstrom black hole. It is also demonstrated that the only exterior solution consistent with the weak and null energy conditions is the Maxwell one. Thus, in the light of the energy conditions, it is concluded that only Maxwell modes propagate outside the horizon and, therefore, the no-hair theorem is satisfied in the case of Bopp-Podolsky fields in spherically symmetric space-times.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] No-hair theorem for spontaneously broken Abelian models in static black holes -: art. no. 104004
    Ayón-Beato, E
    PHYSICAL REVIEW D, 2000, 62 (10): : 7
  • [32] Evading no-hair theorems: Hairy black holes in a Minkowski box
    Dias, Oscar J. C.
    Masachs, Ramon
    PHYSICAL REVIEW D, 2018, 97 (12)
  • [33] de Broglie-Proca and Bopp-Podolsky massive photon gases in cosmology
    Cuzinatto, R. R.
    de Morais, E. M.
    Medeiros, L. G.
    Naldoni de Souza, C.
    Pimentel, B. M.
    EPL, 2017, 118 (01)
  • [34] TESTING THE BLACK HOLE NO-HAIR THEOREM WITH OJ287
    Valtonen, M. J.
    Mikkola, S.
    Lehto, H. J.
    Gopakumar, A.
    Hudec, R.
    Polednikova, J.
    ASTROPHYSICAL JOURNAL, 2011, 742 (01):
  • [35] Testing the no-hair theorem with black hole ringdowns using TIGER
    Meidam, J.
    Agathos, M.
    Van Den Broeck, C.
    Veitch, J.
    Sathyaprakash, B. S.
    PHYSICAL REVIEW D, 2014, 90 (06):
  • [36] Ringdown overtones, black hole spectroscopy, and no-hair theorem tests
    Bhagwat, Swetha
    Forteza, Xisco Jimenez
    Pani, Paolo
    Ferrari, Valeria
    PHYSICAL REVIEW D, 2020, 101 (04)
  • [38] Local version of the no-hair theorem
    Dobkowski-Rylko, Denis
    Lewandowski, Jerzy
    Pawlowski, Tomasz
    PHYSICAL REVIEW D, 2018, 98 (02)
  • [39] Testing the No-Hair Theorem with Sgr A*
    Johannsen, Tim
    ADVANCES IN ASTRONOMY, 2012, 2012
  • [40] Exploring the possibility of testing the no-hair theorem with Minkowski-deformed regular hairy black holes via photon rings
    Yang, Xilong
    Tang, Meirong
    Xu, Zhaoyi
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (09):