Characterization of titanium powders processed in n-hexane by high-energy ball milling

被引:13
|
作者
Restrepo, A. H. [1 ]
Rios, J. M. [1 ]
Arango, F. [1 ]
Correa, E. [2 ]
Zuleta, A. A. [3 ]
Valencia-Escobar, A. [3 ]
Bolivar, F. J. [1 ]
Castano, J. G. [1 ]
Echeverria, F. E. [1 ]
机构
[1] Univ Antioquia, Ctr Invest Innovac & Desarrollo Mat CIDEMAT, POB 1226,Calle 62 52-59, Medellin, Colombia
[2] Univ Medellin, Fac Ingn, Grp Invest Mat Con Impacto Mat & MPAC, Camera 87 30-65, Medellin, Colombia
[3] Univ Pontificia Bolivariana, Fac Diseno Ind, Sede Medellin, Grp Invest Estudios Diseno GED, Circular 1 70-01, Medellin, Colombia
关键词
Titanium; High-energy ball milling; Allotropic transformation; Microstructural analysis; CENTERED-CUBIC TITANIUM; COMMERCIAL PURE TI; X-RAY-DIFFRACTION; STRUCTURAL-PROPERTIES; MICROSTRUCTURE; ALLOYS; DEFORMATION; METALLURGY; CARBIDE;
D O I
10.1007/s00170-020-05991-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The effect of speed and milling time on the morphology, crystallite size, and phase composition of Ti Cp powders processed in n-hexane by high-energy ball milling (HEBM) using a E-max Retsch equipment was studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Lattice parameters, mean crystallite size, lattice strain, and dislocation density were obtained from Rietveld analysis. The XRD and TEM results show that the HEBM process of the Ti Cp promotes the transition from HCP to FCC after 6 h of milling at 1400 rpm. The transformation process could be attributed to the energy generated in the milling process which induces high deformation and presence of high-density dislocations in the powder.
引用
收藏
页码:1681 / 1690
页数:10
相关论文
共 50 条
  • [31] Fabrication of silicon carbide reinforced aluminium powders by high-energy ball-milling
    Wielage, B.
    Nestler, D.
    Siebeck, S.
    Podlesak, H.
    [J]. MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2010, 41 (06) : 476 - 481
  • [32] Electrochemical Kinetic Analysis of Carbon Steel Powders Produced by High-Energy Ball Milling
    Soliz, Alvaro
    Guzman, Danny
    Caceres, Luis
    Madrid, Felipe M. Galleguillos
    [J]. METALS, 2022, 12 (04)
  • [33] Effect of high-energy ball milling on the Mg alloy powders under alcohol protection
    Li, Gang
    Liu, Xingxing
    Guo, Qi
    Tang, Jianren
    Yan, Biao
    [J]. PROGRESS IN POWDER METALLURGY, PTS 1 AND 2, 2007, 534-536 : 785 - +
  • [34] Reducing the diffusion barriers of Pt/Beta catalyzed n-hexane isomerization by SBA-15 addition and high-energy milling
    Liu, Pengpeng
    Qiu, Zihui
    Shi, Huibing
    Song, Yu
    Zhao, Deming
    Wang, Pengzhao
    Wang, Tinghai
    Bao, Xiaojun
    [J]. MICROPOROUS AND MESOPOROUS MATERIALS, 2023, 356
  • [35] Nanostructured FeNiZrB powders synthesized by high-energy ball milling: structural and hyperfine characterizations
    V. A. Peña Rodríguez
    J. Medina Medina
    C. Rojas-Ayala
    P. Paucar Cabrera
    C. V. Landauro
    J. Quispe-Marcatoma
    J. Rojas Tapia
    E. M. Baggio-Saitovitch
    E. C. Passamani
    [J]. Hyperfine Interactions, 2021, 242
  • [36] Fabrication of TiAl Alloy Powders by High-Energy Ball Milling and Low Temperature Sintering
    Liu, Xiaoting
    Shao, Huiping
    Yang, Donghua
    Guo, Zhimeng
    Ji, Ye
    [J]. PRODUCT DESIGN AND MANUFACTURING, 2011, 338 : 60 - 64
  • [37] A simple route to produce tungsten carbide powders by high-energy ball milling and annealing
    Fernique, R. M. T.
    Savoie, S.
    Gariepy, M.
    Braidy, N.
    Schulz, R.
    [J]. CERAMICS INTERNATIONAL, 2020, 46 (02) : 1736 - 1742
  • [38] Preparation and characterization of PLZT ceramics using high-energy ball milling
    Kong, LB
    Ma, J
    Zhu, W
    Tan, OK
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2001, 322 (1-2) : 290 - 297
  • [39] Synthesis and characterization of yttrium aluminum garnet by high-energy ball milling
    Huang, Hui
    Gong, Hua
    Tang, Dingyuan
    Tan, O. K.
    [J]. OPTICAL MATERIALS, 2009, 31 (05) : 716 - 719
  • [40] High-energy ball milling of nonstoichiometric compounds
    Gusev, A. I.
    [J]. PHYSICS-USPEKHI, 2020, 63 (04) : 342 - 364