Superlinear Perturbations of the Eigenvalue Problem for the Robin Laplacian Plus an Indefinite and Unbounded Potential

被引:0
|
作者
Papageorgiou, Nikolaos S. [1 ,2 ]
Radulescu, Vicentiu D. [2 ,3 ,4 ]
Repovs, Dusan D. [2 ,5 ,6 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
[3] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[4] Univ Craiova, Dept Math, Craiova 200585, Romania
[5] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[6] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
关键词
Superlinear perturbation; Regularity theory; Maximum principle; Constant sign and nodal solutions; Critical groups; Indefinite potential; MULTIPLE SOLUTIONS; EQUATIONS; EXISTENCE; SIGN;
D O I
10.1007/s00025-020-01234-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a superlinear perturbation of the eigenvalue problem for the Robin Laplacian plus an indefinite and unbounded potential. Using variational tools and critical groups, we show that when lambda is close to a nonprincipal eigenvalue, then the problem has seven nontrivial solutions. We provide sign information for six of them.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] A weighted eigenvalue problem for the p-Laplacian plus a potential
    Mabel Cuesta
    Humberto Ramos Quoirin
    Nonlinear Differential Equations and Applications NoDEA, 2009, 16 : 469 - 491
  • [32] The Robin eigenvalue problem for the p(x)-Laplacian as p → ∞
    Abdullayev, Farhod
    Bocea, Marian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 91 : 32 - 45
  • [33] NODAL SOLUTIONS FOR THE ROBIN p-LAPLACIAN PLUS AN INDEFINITE POTENTIAL AND A GENERAL REACTION TERM
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (01) : 231 - 241
  • [34] SMALL PERTURBATIONS OF ROBIN PROBLEMS DRIVEN BY THE p-LAPLACIAN PLUS A POSITIVE POTENTIAL
    Bahrouni, Anouar
    Radulescu, Vicentiu D.
    Winkert, Patrick
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2021, 57 (02) : 663 - 673
  • [35] Robin problems with indefinite, unbounded potential and reaction of arbitrary growth
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Revista Matemática Complutense, 2016, 29 : 91 - 126
  • [36] Robin problems with indefinite, unbounded potential and reaction of arbitrary growth
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    REVISTA MATEMATICA COMPLUTENSE, 2016, 29 (01): : 91 - 126
  • [37] An optimization problem for the first eigenvalue of the p-Laplacian plus a potential
    Fernandez Bonder, Julian
    Del Pezzo, Leandro M.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (04) : 675 - 690
  • [38] POSITIVE SOLUTIONS FOR PARAMETRIC SEMILINEAR ROBIN PROBLEMS WITH INDEFINITE AND UNBOUNDED POTENTIAL
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    MATHEMATICA SCANDINAVICA, 2017, 121 (02) : 263 - 292
  • [39] ASYMPTOTICS OF EIGENVALUE CLUSTERS FOR LAPLACIAN PLUS A POTENTIAL
    WEINSTEIN, A
    DUKE MATHEMATICAL JOURNAL, 1977, 44 (04) : 883 - 892
  • [40] Principal Eigenvalue Minimization for an Elliptic Problem with Indefinite Weight and Robin Boundary Conditions
    Hintermueller, M.
    Kao, C. -Y.
    Laurain, A.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2012, 65 (01): : 111 - 146