Vector-Valued Local Approximation Spaces

被引:1
|
作者
Hytonen, Tuomas [1 ]
Merikoski, Jori [1 ,2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, POB 68,Gustaf Hallstromin Katu 2b, FIN-00014 Helsinki, Finland
[2] Univ Turku, Dept Math & Stat, Turku 20014, Finland
基金
欧洲研究理事会;
关键词
Local approximation space; Besov space; Embedding; Uniformly convex space; Martingale cotype; Littlewood-Paley theory; SOBOLEV SPACES; BESOV-SPACES;
D O I
10.1007/s00041-018-9598-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for every Banach space Y, the Besov spaces of functions from the n-dimensional Euclidean space to Y agree with suitable local approximation spaces with equivalent norms. In addition, we prove that the Sobolev spaces of type q are continuously embedded in the Besov spaces of the same type if and only if Y has martingale cotype q. We interpret this as an extension of earlier results of Xu (J Reine Angew Math 504:195-226, 1998), and Martinez et al. (Adv Math 203(2):430-475, 2006). These two results combined give the characterization that Y admits an equivalent norm with modulus of convexity of power type q if and only if weakly differentiable functions have good local approximations with polynomials.
引用
收藏
页码:299 / 320
页数:22
相关论文
共 50 条