Local dual spaces of Banach spaces of vector-valued functions

被引:5
|
作者
González, M [1 ]
Martínez-Abejón, A
机构
[1] Univ Cantabria, Fac Ciencias, Dept Matemat, E-39071 Santander, Spain
[2] Univ Oviedo, Fac Ciencias, Dept Matemat, E-33007 Oviedo, Spain
关键词
local dual space; local reflexivity; norming subspace; Banach spaces of vector-valued functions;
D O I
10.1090/S0002-9939-02-06626-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that L-infinity(mu, X*) is a local dual of L-1(mu, X), and L-1(mu, X*) is a local dual of L-infinity(mu, X), where X is a Banach space. A local dual space of a Banach space Y is a subspace Z of Y* so that we have a local representation of Y* in Z satisfying the properties of the representation of X** in X provided by the principle of local reflexivity.
引用
收藏
页码:3255 / 3258
页数:4
相关论文
共 50 条