The F-box protein EST1 modulates salt tolerance in Arabidopsis by regulating plasma membrane Na+/H+ antiport activity

被引:19
|
作者
Liu, Jie [1 ]
Lin, Qing Fang [1 ,5 ]
Qi, Shi Lian [3 ]
Feng, Xuan Jun [4 ]
Han, Hui Ling [1 ,5 ]
Xu, Tao [2 ]
Hua, Xue Jun [2 ]
机构
[1] Chinese Acad Sci, Inst Bot, Key Lab Plant Resources, Beijing 100093, Peoples R China
[2] Zhejiang Sci Tech Univ, Key Lab Plant Secondary Metab & Regulat Zhejiang, Coll Life Sci & Med, Hangzhou 310018, Zhejiang, Peoples R China
[3] Jiangsu Normal Univ, Key Lab Biotechnol Med Plant Jiangsu Prov, Xuzhou 221116, Jiangsu, Peoples R China
[4] Sichuan Agr Univ, Maize Res Inst, Wenjiang 611130, Sichuan, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
F-box protein; Salt tolerance; Na+/H+ antiporter; Mitogen-activated protein kinase; Arabidopsis thaliana; STRESS-RESPONSE; ION HOMEOSTASIS; DROUGHT STRESS; KINASE; THALIANA; SOS1; PATHWAY; SCF; MECHANISMS; EXPRESSION;
D O I
10.1016/j.jplph.2020.153217
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
F-box protein, one of the building blocks of the SCF complex, functions in substrate recognition of the SCF subtype of E3 ubiquitin ligase. However, the role of F-box protein in salt stress is largely elusive in plants. Here, we report the characterization of an Arabidopsis salt-tolerant mutant est1 with significantly reduced sodium content and higher Na+/H+ antiporter activity after NaCl treatment compared to the wild-type. Over-expression of EST1 resulted in increased sensitivity to salt stress, suggesting that EST1 may act as a negative regulator for salt tolerance in Arabidopsis. EST1 encodes an F-box protein, which interacts with ASK4, ASK14, and ASK18, and is likely targeted to the endoplasmic reticulum. In addition, EST1 interacts with MKK4 and negatively regulates MKK4 protein levels and the activity of the plasma membrane Na+/H+ antiporter. Our findings demonstrate the existence of an EST1-MKK4 module that mediates salt sensitivity by regulating the activity of the plasma membrane Na+/H+ antiporter. These results provide important information for engineering salt-tolerant crops.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis
    Feki, Kaouthar
    Quintero, Francisco J.
    Khoudi, Habib
    Leidi, Eduardo O.
    Masmoudi, Khaled
    Pardo, Jose M.
    Brini, Faical
    PLANT CELL REPORTS, 2014, 33 (02) : 277 - 288
  • [32] Overexpression of AtNHX1, a Vacuolar Na+/H+ Antiporter from Arabidopsis thalina, in Petunia hybrida Enhances Salt and Drought Tolerance
    Xu, Kai
    Hong, Ping
    Luo, Lijun
    Xia, Tao
    JOURNAL OF PLANT BIOLOGY, 2009, 52 (05) : 453 - 461
  • [33] Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum)
    Li-Hong Chen
    Bo Zhang
    Zi-Qin Xu
    Transgenic Research, 2008, 17
  • [34] A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis
    Kaouthar Feki
    Francisco J. Quintero
    Habib Khoudi
    Eduardo O. Leidi
    Khaled Masmoudi
    Jose M. Pardo
    Faiçal Brini
    Plant Cell Reports, 2014, 33 : 277 - 288
  • [35] Overexpression of Na+/H+ antiporter gene AtNHX1 from Arabidopsis thaliana improves the salt tolerance of kiwifruit (Actinidia deliciosa)
    Tian, N.
    Wang, J.
    Xu, Z. Q.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2011, 77 (01) : 160 - 169
  • [36] Expression of a Na+/H+ antiporter RtNHX1 from a recretohalophyte Reaumuria trigyna improved salt tolerance of transgenic Arabidopsis thaliana
    Li, Ningning
    Wang, Xue
    Ma, Binjie
    Du, Chao
    Zheng, Linlin
    Wang, Yingchun
    JOURNAL OF PLANT PHYSIOLOGY, 2017, 218 : 109 - 120
  • [37] Soybean Na+/H+ antiporter GmsSOS1 enhances antioxidant enzyme activity and reduces Na+ accumulation in Arabidopsis and yeast cells under salt stress
    Xiufang Zhao
    Peipei Wei
    Zhen Liu
    Bingjun Yu
    Huazhong Shi
    Acta Physiologiae Plantarum, 2017, 39
  • [38] Overexpression of a Plasma Membrane Bound Na+/H+ Antiporter-Like Protein (SbNHXLP) Confers Salt Tolerance and Improves Fruit Yield in Tomato by Maintaining Ion Homeostasis
    Kumari, P. Hima
    Kumar, S. Anil
    Sivan, Pramod
    Katam, Ramesh
    Suravajhala, Prashanth
    Rao, K. S.
    Varshney, Rajeev K.
    Kishor, Polavarapu B. Kavi
    FRONTIERS IN PLANT SCIENCE, 2017, 7
  • [39] Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1, and salt tolerance in transgenic soybean for over six generations
    Li TianXing
    Zhang Yue
    Liu Hua
    Wu YuTing
    Li WenBin
    Zhang HongXia
    CHINESE SCIENCE BULLETIN, 2010, 55 (12): : 1127 - 1134
  • [40] Regulation of mitogen-activated protein kinase pathways by the plasma membrane Na+/H+ exchanger, NHE1
    Pedersen, Stine Falsig
    Darborg, Barbara Vasek
    Rentsch, Maria Louise
    Rasmussen, Maria
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2007, 462 (02) : 195 - 201