On Galilean connections and the first jet bundle

被引:0
|
作者
Grant, James D. E. [1 ]
Lackey, Bradley C. [2 ]
机构
[1] Univ Vienna, Fak Phys, A-1090 Vienna, Austria
[2] Natl Secur Agcy, Trusted Syst Res Grp, Ft Gg Meade, MD 20755 USA
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2012年 / 10卷 / 05期
关键词
Galilean group; Cartan connections; Jet bundles; 2nd order ODE;
D O I
10.2478/s11533-012-0089-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We see how the first jet bundle of curves into affine space can be realized as a homogeneous space of the Galilean group. Cartan connections with this model are precisely the geometric structure of second-order ordinary differential equations under time-preserving transformations - sometimes called KCC-theory. With certain regularity conditions, we show that any such Cartan connection induces "laboratory" coordinate systems, and the geodesic equations in this coordinates form a system of second-order ordinary differential equations. We then show the converse - the "fundamental theorem" - that given such a coordinate system, and a system of second order ordinary differential equations, there exists regular Cartan connections yielding these, and such connections are completely determined by their torsion.
引用
收藏
页码:1889 / 1895
页数:7
相关论文
共 50 条
  • [21] First order Galilean superfluid dynamics
    Banerjee, Nabamita
    Dutta, Suvankar
    Jain, Akash
    PHYSICAL REVIEW D, 2017, 96 (06)
  • [22] Efficiency and duality for a vector of quotients of curvilinear functionals on the first-order jet bundle
    Debnath, Indira P.
    Gupta, S. K.
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2017, 38 (06): : 1227 - 1238
  • [23] Machine learning line bundle connections
    Ashmore, Anthony
    Deen, Rehan
    He, Yang-Hui
    Ovrut, Burt A.
    PHYSICS LETTERS B, 2022, 827
  • [24] Equivariant characteristic forms on the bundle of connections
    Pérez, RF
    JOURNAL OF GEOMETRY AND PHYSICS, 2005, 54 (02) : 197 - 212
  • [25] Metrics and Connections on the Bundle of Affinor Frames
    Habil FATTAYEV
    Arif SALIMOV
    Chinese Annals of Mathematics,Series B, 2021, (01) : 121 - 134
  • [26] Natural connections on the bundle of Riemannian metrics
    Ferreiro Perez, R.
    Munoz Masque, J.
    MONATSHEFTE FUR MATHEMATIK, 2008, 155 (01): : 67 - 78
  • [27] Connections and Higgs fields on a principal bundle
    Indranil Biswas
    Tomás L. Gómez
    Annals of Global Analysis and Geometry, 2008, 33 : 19 - 46
  • [28] The Kostant–García quantization of the bundle of connections
    Javier Pérez Alvarez
    Mathematische Zeitschrift, 2009, 262 : 17 - 26
  • [29] Monodromies of algebraic connections on the trivial bundle
    Jun, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (10): : 809 - 813
  • [30] Connections and curvings on lifting bundle gerbes
    Gomi, K
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 : 510 - 526