Comparison of interpretation methods for large amplitude oscillatory shear response

被引:0
|
作者
Kim, Hyungsup
Hyun, Kyu
Kim, Dae-Jin
Cho, Kwang Soo
机构
[1] Konkuk Univ, Dept Text Engn, Seoul 143701, South Korea
[2] Seoul Natl Univ, Sch Chem & Biol Engn, Seoul 151744, South Korea
[3] Kyungpook Natl Univ, Ctr Acad Links Ind Collaborat Evolut, Taegu 702701, South Korea
[4] Kyungpook Natl Univ, Dept Polymer Sci, Taegu 702701, South Korea
关键词
LAOS; Fourier transform; nonlinear viscoelasticity;
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We compare FT (Fourier Transform) and SD (Stress Decomposition), the interpretation methods for LAOS (Large Amplitude Oscillatory Shear). Although the two methods are equivalent in mathematics, they are significantly different in numerical procedures. Precision of FT greatly depends on sampling rate and length of data because FT of experimental data is the discrete version of Fourier integral theorem. FT inevitably involves unnecessary frequencies which must not appear in LAOS. On the other hand, SD is free from the problems from which FT suffers, because SD involves only odd harmonics of primary frequency. SD is based on two axioms on shear stress: [1] shear stress is a sufficiently smooth function of strain and its time derivatives; [2] shear stress satisfies macroscopic time-reversal symmetry. In this paper, we compared numerical aspects of the two interpretation methods for LAOS.
引用
收藏
页码:91 / 98
页数:8
相关论文
共 50 条
  • [41] Numerical simulation of a drop undergoing large amplitude oscillatory shear
    Renardy, Y
    RHEOLOGICA ACTA, 2006, 45 (03) : 223 - 227
  • [42] SIMPLE SCALAR MODEL AND ANALYSIS FOR LARGE AMPLITUDE OSCILLATORY SHEAR
    Merger, Dimitri
    Abbasi, Mahdi
    Merger, Juri
    Giacomin, A. Jeffrey
    Saengow, Chaimongkol
    Wilhelm, Manfred
    APPLIED RHEOLOGY, 2016, 26 (05)
  • [43] Pade approximants for large-amplitude oscillatory shear flow
    Giacomin, A. Jeffrey
    Saengow, Chaimongkol
    Guay, Martin
    Kolitawong, Chanyut
    RHEOLOGICA ACTA, 2015, 54 (08) : 679 - 693
  • [44] Padé approximants for large-amplitude oscillatory shear flow
    A. Jeffrey Giacomin
    Chaimongkol Saengow
    Martin Guay
    Chanyut Kolitawong
    Rheologica Acta, 2015, 54 : 679 - 693
  • [45] LARGE AMPLITUDE OSCILLATORY SHEAR Simple to describe, hard to interpret
    Rogers, Simon
    PHYSICS TODAY, 2018, 71 (07) : 34 - 40
  • [46] A CONSTITUTIVE THEORY FOR POLYOLEFINS IN LARGE-AMPLITUDE OSCILLATORY SHEAR
    GIACOMIN, AJ
    JEYASEELAN, RS
    POLYMER ENGINEERING AND SCIENCE, 1995, 35 (09): : 768 - 777
  • [47] Network theory for polymer solutions in large amplitude oscillatory shear
    Jeyaseelan, Ranjit S.
    Giacomin, A. Jeffrey
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2008, 148 (1-3) : 24 - 32
  • [48] Flow instabilities in large amplitude oscillatory shear: a cautionary tale
    Fardin, Marc A.
    Perge, Christophe
    Casanellas, Laura
    Hollis, Thomas
    Taberlet, Nicolas
    Ortin, Jordi
    Lerouge, Sandra
    Manneville, Sebastien
    RHEOLOGICA ACTA, 2014, 53 (12) : 885 - 898
  • [49] Numerical simulation of a drop undergoing large amplitude oscillatory shear
    Y. Renardy
    Rheologica Acta, 2006, 45 : 223 - 227
  • [50] Tethered Semiflexible Polymer under Large Amplitude Oscillatory Shear
    Lamura, Antonio
    Winkler, Roland G.
    POLYMERS, 2019, 11 (04)