Variational approach to second-order impulsive dynamic equations on time scales

被引:3
|
作者
Otero-Espinar, Victoria [1 ]
Pernas-Castano, Tania [1 ,2 ]
机构
[1] Univ Santiago de Compostela, Dept Anal Matemat, Santiago De Compostela 15782, Galicia, Spain
[2] UCM, UC3M, UAM, Inst Ciencias Matemat,CSIC, Madrid 28049, Spain
来源
关键词
impulsive dynamic equations; second-order boundary value problem; variational techniques; critical point theory; time scales; MULTIPLE POSITIVE SOLUTIONS; BOUNDARY-VALUE-PROBLEMS; DEPENDENCE; EXISTENCE; SYSTEMS;
D O I
10.1186/1687-2770-2013-119
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to employ variational techniques and critical point theory to prove some conditions for the existence of solutions to a nonlinear impulsive dynamic equation with homogeneous Dirichlet boundary conditions. Also, we are interested in the solutions of the impulsive nonlinear problem with linear derivative dependence satisfying an impulsive condition.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Oscillation criteria of second-order delay dynamic equations on time scales
    Han, Zhenlai
    Sun, Shurong
    Sui, Meizhen
    SNPD 2007: EIGHTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING, VOL 1, PROCEEDINGS, 2007, : 406 - +
  • [22] Oscillation of second-order nonlinear delay dynamic equations on time scales
    Zhang, BG
    Zhu, SL
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (04) : 599 - 609
  • [23] OSCILLATION FOR FORCED SECOND-ORDER NONLINEAR DYNAMIC EQUATIONS ON TIME SCALES
    Huang, Mugen
    Feng, Weizhen
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,
  • [24] Oscillation of Second-Order Nonlinear Delay Dynamic Equations on Time Scales
    Agwa, H. A.
    Khodier, A. M. M.
    Hassan, Heba A.
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 2011
  • [25] Oscillation for Second-Order Nonlinear Delay Dynamic Equations on Time Scales
    Han, Zhenlai
    Li, Tongxing
    Sun, Shurong
    Zhang, Chenghui
    ADVANCES IN DIFFERENCE EQUATIONS, 2009,
  • [26] Asymptotic iteration technique for second-order dynamic equations on time scales
    Misir, Adil
    Ogrekci, Suleyman
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (04)
  • [27] Oscillation for Second-Order Nonlinear Delay Dynamic Equations on Time Scales
    Zhenlai Han
    Tongxing Li
    Shurong Sun
    Chenghui Zhang
    Advances in Difference Equations, 2009
  • [28] Oscillatory Behavior of Nonlinear Second-Order Dynamic Equations on Time Scales
    Chen, Da-Xue
    INFORMATION AND BUSINESS INTELLIGENCE, PT II, 2012, 268 : 121 - 128
  • [29] Oscillation of second-order nonlinear neutral dynamic equations on time scales
    Zhang, Shao-Yan
    Wang, Qi-Ru
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (10) : 2837 - 2848
  • [30] Eigenvalue problems for second-order nonlinear dynamic equations on time scales
    Li, WT
    Liu, XL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (02) : 578 - 592