Variational approach to second-order impulsive dynamic equations on time scales

被引:3
|
作者
Otero-Espinar, Victoria [1 ]
Pernas-Castano, Tania [1 ,2 ]
机构
[1] Univ Santiago de Compostela, Dept Anal Matemat, Santiago De Compostela 15782, Galicia, Spain
[2] UCM, UC3M, UAM, Inst Ciencias Matemat,CSIC, Madrid 28049, Spain
来源
关键词
impulsive dynamic equations; second-order boundary value problem; variational techniques; critical point theory; time scales; MULTIPLE POSITIVE SOLUTIONS; BOUNDARY-VALUE-PROBLEMS; DEPENDENCE; EXISTENCE; SYSTEMS;
D O I
10.1186/1687-2770-2013-119
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to employ variational techniques and critical point theory to prove some conditions for the existence of solutions to a nonlinear impulsive dynamic equation with homogeneous Dirichlet boundary conditions. Also, we are interested in the solutions of the impulsive nonlinear problem with linear derivative dependence satisfying an impulsive condition.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Variational approach to second-order impulsive dynamic equations on time scales
    Victoria Otero-Espinar
    Tania Pernas-Castaño
    Boundary Value Problems, 2013
  • [2] OSCILLATION OF SECOND-ORDER NONLINEAR IMPULSIVE DYNAMIC EQUATIONS ON TIME SCALES
    Huang, Mugen
    Feng, Weizhen
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
  • [3] Oscillation Criteria For Second-order Impulsive Dynamic Equations On Time Scales
    Li, Qiaoluan
    Zhou, Lina
    APPLIED MATHEMATICS E-NOTES, 2011, 11 : 33 - 40
  • [4] Oscillation for Forced Second-Order Impulsive Nonlinear Dynamic Equations on Time Scales
    Huang, Mugen
    Wen, Kunwen
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2019, 2019
  • [5] VARIATIONAL APPROACH TO A CLASS OF NONAUTONOMOUS SECOND-ORDER SYSTEMS ON TIME SCALES WITH IMPULSIVE EFFECTS
    Zhou, Jianwen
    Li, Yongkun
    Wang, Yanning
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (05): : 1575 - 1596
  • [6] OSCILLATION OF SECOND-ORDER NONLINEAR IMPULSIVE DYNAMIC EQUATIONS WITH A DAMPING TERM ON TIME SCALES
    Agwa, H. A.
    Khodier, A. M. M.
    Atteya, H. M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (01): : 23 - 38
  • [7] Extremal solutions of second order impulsive dynamic equations on time scales
    Benchohra, M.
    Ntouyas, S. K.
    Ouahab, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (01) : 425 - 434
  • [8] Oscillation criteria for second-order dynamic equations on time scales
    Agarwal, Ravi P.
    Bohner, Martin
    Li, Tongxing
    Zhang, Chenghui
    APPLIED MATHEMATICS LETTERS, 2014, 31 : 34 - 40
  • [9] Oscillation of second-order delay dynamic equations on time scales
    Sun S.
    Han Z.
    Zhang C.
    Journal of Applied Mathematics and Computing, 2009, 30 (1-2) : 459 - 468
  • [10] Oscillation of second-order damped dynamic equations on time scales
    Saker, Samir H.
    Agarwal, Ravi P.
    O'Regan, Donal
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (02) : 1317 - 1337