MIDClass: Microarray Data Classification by Association Rules and Gene Expression Intervals

被引:12
|
作者
Giugno, Rosalba [1 ]
Pulvirenti, Alfredo [1 ]
Cascione, Luciano [2 ]
Pigola, Giuseppe [1 ]
Ferro, Alfredo [1 ]
机构
[1] Univ Catania, Dept Clin & Mol Biomed, Catania, Italy
[2] Ohio State Univ, Ctr Comprehens Canc, Dept Mol Virol Immunol & Med Genet, Columbus, OH 43210 USA
来源
PLOS ONE | 2013年 / 8卷 / 08期
关键词
CANCER; ESTROGEN; PREDICTION; PROTEIN; CELLS;
D O I
10.1371/journal.pone.0069873
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a new classification method for expression profiling data, called MIDClass (Microarray Interval Discriminant CLASSifier), based on association rules. It classifies expressions profiles exploiting the idea that the transcript expression intervals better discriminate subtypes in the same class. A wide experimental analysis shows the effectiveness of MIDClass compared to the most prominent classification approaches.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Clustering of Association Rules on Microarray Gene Expression Data
    Alagukumar, S.
    Vanitha, C. Devi Arockia
    Lawrance, R.
    [J]. ADVANCED COMPUTING AND INTELLIGENT ENGINEERING, 2020, 1082 : 85 - 97
  • [2] Mining Fuzzy Association Rules from microarray gene expression data for leukemia classification
    He, Yuanchen
    Tang, Yuchun
    Zhang, Yan-Qing
    Sunderraman, Rajshekhar
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, 2006, : 461 - +
  • [3] Biologically Relevant Association Rules for Classification of Microarray Data
    Antonie, Luiza
    Bessonov, Kyrylo
    [J]. APPLIED COMPUTING REVIEW, 2012, 12 (01): : 12 - 23
  • [4] Microarray gene expression data association rules mining based on JG-tree
    Jiang, XR
    Gruenwald, L
    [J]. 14TH INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2003, : 27 - 31
  • [5] On the classification of microarray gene-expression data
    Basford, Kaye E.
    McLachlan, Geoffrey J.
    Rathnayake, Suren I.
    [J]. BRIEFINGS IN BIOINFORMATICS, 2013, 14 (04) : 402 - 410
  • [6] Classification of Microarray Gene Expression Data using Associative Classification
    Alagukumar, S.
    Lawrance, R.
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMPUTING TECHNOLOGIES AND INTELLIGENT DATA ENGINEERING (ICCTIDE'16), 2016,
  • [7] A STUDY ON GENE SELECTION AND CLASSIFICATION ALGORITHMS FOR CLASSIFICATION OF MICROARRAY GENE EXPRESSION DATA
    Chin, Yeo Lee
    Deris, Safaai
    [J]. JURNAL TEKNOLOGI, 2005, 43
  • [8] An efficient approach for classification of gene expression microarray data
    Sreepada, Rama Syamala
    Vipsita, Swati
    Mohapatra, Puspanjali
    [J]. 2014 FOURTH INTERNATIONAL CONFERENCE OF EMERGING APPLICATIONS OF INFORMATION TECHNOLOGY (EAIT), 2014, : 344 - 348
  • [9] Dimension reduction for classification with gene expression microarray data
    Dai, Jian J.
    Lieu, Linh
    Rocke, David
    [J]. STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2006, 5
  • [10] An integrative gene selection with association analysis for microarray data classification
    Fang, Ong Huey
    Mustapha, Norwati
    Sulaiman, Md. Nasir
    [J]. INTELLIGENT DATA ANALYSIS, 2014, 18 (04) : 739 - 758