Dimension reduction for classification with gene expression microarray data

被引:0
|
作者
Dai, Jian J. [1 ]
Lieu, Linh [2 ]
Rocke, David [1 ]
机构
[1] Univ Calif Davis, Davis, CA 95616 USA
[2] Univ Calif Los Angeles, Los Angeles, CA 90024 USA
关键词
partial least squares; sliced inverse regression; feature extraction; gene expression; tumor classification;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An important application of gene expression microarray data is classification of biological samples or prediction of clinical and other outcomes. One necessary part of multivariate statistical analysis in such applications is dimension reduction. This paper provides a comparison study of three dimension reduction techniques, namely partial least squares (PLS), sliced inverse regression (SIR) and principal component analysis (PCA), and evaluates the relative performance of classification procedures incorporating those methods. A five- step assessment procedure is designed for the purpose. Predictive accuracy and computational efficiency of the methods are examined. Two gene expression data sets for tumor classification are used in the study.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Importance of data structure in comparing two dimension reduction methods for classification of microarray gene expression data
    Truntzer, Caroline
    Mercier, Catherine
    Esteve, Jacques
    Gautier, Christian
    Roy, Pascal
    [J]. BMC BIOINFORMATICS, 2007, 8 (1)
  • [2] Importance of data structure in comparing two dimension reduction methods for classification of microarray gene expression data
    Caroline Truntzer
    Catherine Mercier
    Jacques Estève
    Christian Gautier
    Pascal Roy
    [J]. BMC Bioinformatics, 8
  • [3] Reader's reaction to "Dimension reduction for classification with gene expression microarray data" by Dai et al (2006)
    Boulesteix, Anne-Laure
    [J]. STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2006, 5
  • [4] Partial least squares dimension reduction for microarray gene expression data with a censored response
    Nguyen, DV
    [J]. MATHEMATICAL BIOSCIENCES, 2005, 193 (01) : 119 - 137
  • [5] Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data
    Bartenhagen, Christoph
    Klein, Hans-Ulrich
    Ruckert, Christian
    Jiang, Xiaoyi
    Dugas, Martin
    [J]. BMC BIOINFORMATICS, 2010, 11
  • [6] Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data
    Christoph Bartenhagen
    Hans-Ulrich Klein
    Christian Ruckert
    Xiaoyi Jiang
    Martin Dugas
    [J]. BMC Bioinformatics, 11
  • [7] Dimension reduction of gene expression data
    Lee J.
    Ciccarello S.
    Acharjee M.
    Das K.
    [J]. Journal of Statistical Theory and Practice, 2018, 12 (2) : 450 - 461
  • [8] On the classification of microarray gene-expression data
    Basford, Kaye E.
    McLachlan, Geoffrey J.
    Rathnayake, Suren I.
    [J]. BRIEFINGS IN BIOINFORMATICS, 2013, 14 (04) : 402 - 410
  • [9] Effective dimension reduction methods for tumor classification using gene expression data
    Antoniadis, A
    Lambert-Lacroix, S
    Leblanc, F
    [J]. BIOINFORMATICS, 2003, 19 (05) : 563 - 570
  • [10] Classification of Microarray Gene Expression Data using Associative Classification
    Alagukumar, S.
    Lawrance, R.
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMPUTING TECHNOLOGIES AND INTELLIGENT DATA ENGINEERING (ICCTIDE'16), 2016,