Locally conformally flat quasi-Einstein manifolds

被引:32
|
作者
Catino, Giovanni [1 ]
Mantegazza, Carlo [2 ]
Mazzieri, Lorenzo [2 ]
Rimoldi, Michele [3 ]
机构
[1] Scuola Int Super Studi Avanzati, SISSA, I-34136 Trieste, Italy
[2] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[3] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
WEYL TENSOR; SOLITONS; METRICS; SPACES;
D O I
10.1515/CRELLE.2011.183
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that any complete locally conformally flat quasi-Einstein manifold of dimension n >= 3 is locally a warped product with (n-1)-dimensional fibers of constant curvature. This result includes also the case of locally conformally flat gradient Ricci solitons.
引用
收藏
页码:181 / 189
页数:9
相关论文
共 50 条
  • [21] On generalized quasi-Einstein manifolds
    Freitas Filho, Antonio Airton
    Tenenblat, Keti
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2022, 178
  • [22] Isotropic quasi-Einstein manifolds
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Valle-Regueiro, X.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (24)
  • [23] Conformally Kahler geometry and quasi-Einstein metrics
    Batat, Wafaa
    Hall, Stuart J.
    Jizany, Ali
    Murphy, Thomas
    [J]. MUENSTER JOURNAL OF MATHEMATICS, 2015, 8 (01): : 211 - 228
  • [24] Exact Solutions of Einstein Field Equation in Locally Conformally Flat Manifolds
    Adriano, Levi Rosa
    de Menezes, Ilton Ferreira
    Pieterzack, Mauricio Donizetti
    Pina, Romildo da Silva
    [J]. RESULTS IN MATHEMATICS, 2021, 76 (04)
  • [25] ON LOCALLY CONFORMALLY FLAT WEAKLY-EINSTEIN FOUR-MANIFOLDS
    Haji-Badali, Ali
    Zaeim, Amirhesam
    Atashpeykar, Parvane
    [J]. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2023, 85 (03): : 73 - 86
  • [26] ON LOCALLY CONFORMALLY FLAT WEAKLY-EINSTEIN FOUR-MANIFOLDS
    Haji-Badali, Ali
    Zaeim, Amirhesam
    Atashpeykar, Parvane
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2023, 85 (03): : 73 - 86
  • [27] Exact Solutions of Einstein Field Equation in Locally Conformally Flat Manifolds
    Levi Rosa Adriano
    Ilton Ferreira de Menezes
    Mauricio Donizetti Pieterzack
    Romildo da Silva Pina
    [J]. Results in Mathematics, 2021, 76
  • [28] Compact quasi-Einstein manifolds with boundary
    Diogenes, Rafael
    Gadelha, Tiago
    [J]. MATHEMATISCHE NACHRICHTEN, 2022, 295 (09) : 1690 - 1708
  • [29] ON PSEUDO GENERALIZED QUASI-EINSTEIN MANIFOLDS
    Shaikh, A. A.
    Jana, Sanjib Kumar
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2008, 39 (01): : 9 - 23
  • [30] On the Rigidity of Generalized Quasi-Einstein Manifolds
    M. Ahmad Mirshafeazadeh
    B. Bidabad
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2029 - 2042