Highly multiplexed quantitation of gene expression on single cells

被引:51
|
作者
Dominguez, Maria H. [1 ]
Chattopadhyay, Pratip K. [1 ]
Ma, Steven [2 ]
Lamoreaux, Laurie [2 ]
McDavid, Andrew [3 ]
Finak, Greg [3 ]
Gottardo, Raphael [3 ]
Koup, Richard A. [2 ]
Roederer, Mario [1 ]
机构
[1] NIAID, ImmunoTechnol Sect, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA
[2] NIAID, Immunol Lab, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA
[3] Univ Washington, Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, Div Publ Hlth Sci, Seattle, WA 98195 USA
基金
比尔及梅琳达.盖茨基金会;
关键词
Single cell; Gene expression; T-cell activation; qPCR; T-CELLS; HIV-INFECTION; VACCINE; QUALITY;
D O I
10.1016/j.jim.2013.03.002
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Highly multiplexed, single-cell technologies reveal important heterogeneity within cell populations. Recently, technologies to simultaneously measure expression of 96 (or more) genes from a single cell have been developed for immunologic monitoring. Here, we report a rigorous, optimized, quantitative methodology for using this technology. Specifically: we describe a unique primer/probe qualification method necessary for quantitative results; we show that primers do not compete in highly multiplexed amplifications; we define the limit of detection for this assay as a single mRNA transcript; and, we show that the technical reproducibility of the system is very high. We illustrate two disparate applications of the platform: a "bulk" approach that measures expression patterns from 100 cells at a time in high throughput to define gene signatures, and a single-cell approach to define the coordinate expression patterns of multiple genes and reveal unique subsets of cells. Published by Elsevier B.V.
引用
收藏
页码:133 / 145
页数:13
相关论文
共 50 条
  • [41] Quantitation of Gene Expression in Formaldehyde-Fixed and Fluorescence-Activated Sorted Cells
    Russell, Julia N.
    Clements, Janice E.
    Gama, Lucio
    PLOS ONE, 2013, 8 (09):
  • [42] A Highly Scalable Method for Joint Whole-Genome Sequencing and Gene-Expression Profiling of Single Cells
    Zachariadis, Vasilios
    Cheng, Huaitao
    Andrews, Nathanael
    Enge, Martin
    MOLECULAR CELL, 2020, 80 (03) : 541 - +
  • [43] Gene expression profiling of single Hodgkin lymphoma cells
    Mollweide, A.
    Richter, G. H. S.
    Kremer, M.
    Fend, F.
    Klein, C.
    Koerholz, D.
    Burdach, S.
    KLINISCHE PADIATRIE, 2007, 219 (03): : 189 - 189
  • [44] Gene expression of single Reed-Sternberg cells
    Messineo, C
    Bagg, A
    Irving, S
    Ferguson, M
    He, WW
    Dillon, P
    Cossman, J
    LABORATORY INVESTIGATION, 1997, 76 (01) : 757 - 757
  • [45] Gene expression profiling of single haematopoietic precursor cells
    Sakhinia, E
    Bashein, A
    Buckle, AM
    Byers, R
    Brady, G
    EXPERIMENTAL HEMATOLOGY, 2005, 33 (07) : 83 - 83
  • [46] TOOLS FOR GENE EXPRESSION ANALYSIS OF SINGLE-CELLS
    Hideki, Kambara
    PROGRESS ON POST-GENOME TECHNOLOGIES AND MODERN NATURAL PRODUCTS, 2011, 2011, : 2 - 3
  • [47] Gene expression of single cells mapped in tissue sections
    Stahl, Patrik L.
    NATURE, 2024, 625 (7993) : 38 - 39
  • [48] Combinatorial labeling of single cells for gene expression cytometry
    Fan, H. Christina
    Fu, Glenn K.
    Fodor, Stephen P. A.
    SCIENCE, 2015, 347 (6222)
  • [49] Predicting stochastic gene expression dynamics in single cells
    Mettetal, Jerome T.
    Muzzey, Dale
    Pedraza, Juan M.
    Ozbudak, Ertugrul M.
    van Oudenaarden, Alexander
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (19) : 7304 - 7309
  • [50] Gene expression profiling in single cells within tissue
    Capodieci P.
    Donovan M.
    Buchinsky H.
    Jeffers Y.
    Cordon-Cardo C.
    Gerald W.
    Edelson J.
    Shenoy S.M.
    Singer R.H.
    Nature Methods, 2005, 2 (9) : 663 - 665