Bootstrapped inference for variance parameters, measures of heterogeneity and random effects in multilevel logistic regression models

被引:12
|
作者
Austin, Peter C. [1 ,2 ,3 ]
Leckie, George [4 ]
机构
[1] ICES, G106,2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
[2] Univ Toronto, Inst Hlth Policy Management & Evaluat, Toronto, ON, Canada
[3] Sunnybrook Res Inst, Schulich Heart Res Program, Toronto, ON, Canada
[4] Univ Bristol, Ctr Multilevel Modeling, Bristol, Avon, England
基金
英国经济与社会研究理事会; 加拿大健康研究院;
关键词
Bootstrap; hierarchical model; Monte Carlo simulations; multilevel model; random-effects model; variance; BRIEF CONCEPTUAL TUTORIAL; SOCIAL EPIDEMIOLOGY; COMPONENTS; HEALTH; SIZE;
D O I
10.1080/00949655.2020.1797738
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We used Monte Carlo simulations to assess the performance of three bootstrap procedures for use with multilevel data (the parametric bootstrap, the residuals bootstrap, and the nonparametric bootstrap) for estimating the sampling variation of three measures of cluster variation and heterogeneity when using a multilevel logistic regression model: the variance of the distribution of the random effects, the variance partition coefficient (equivalent here to the intraclass correlation coefficient), and the median odds ratio. We also described a novel parametric bootstrap procedure to estimate the standard errors of the predicted cluster-specific random effects. Our results suggest that the parametric and residuals bootstrap should, in general, be used to estimate the sampling variation of key measures of cluster variation and heterogeneity. The performance of the novel parametric bootstrap procedure for estimating the standard errors of predicted cluster-specific random effects tended to exceed that of the model-based estimates.
引用
收藏
页码:3175 / 3199
页数:25
相关论文
共 50 条