Bootstrapped inference for variance parameters, measures of heterogeneity and random effects in multilevel logistic regression models

被引:12
|
作者
Austin, Peter C. [1 ,2 ,3 ]
Leckie, George [4 ]
机构
[1] ICES, G106,2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
[2] Univ Toronto, Inst Hlth Policy Management & Evaluat, Toronto, ON, Canada
[3] Sunnybrook Res Inst, Schulich Heart Res Program, Toronto, ON, Canada
[4] Univ Bristol, Ctr Multilevel Modeling, Bristol, Avon, England
基金
加拿大健康研究院; 英国经济与社会研究理事会;
关键词
Bootstrap; hierarchical model; Monte Carlo simulations; multilevel model; random-effects model; variance; BRIEF CONCEPTUAL TUTORIAL; SOCIAL EPIDEMIOLOGY; COMPONENTS; HEALTH; SIZE;
D O I
10.1080/00949655.2020.1797738
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We used Monte Carlo simulations to assess the performance of three bootstrap procedures for use with multilevel data (the parametric bootstrap, the residuals bootstrap, and the nonparametric bootstrap) for estimating the sampling variation of three measures of cluster variation and heterogeneity when using a multilevel logistic regression model: the variance of the distribution of the random effects, the variance partition coefficient (equivalent here to the intraclass correlation coefficient), and the median odds ratio. We also described a novel parametric bootstrap procedure to estimate the standard errors of the predicted cluster-specific random effects. Our results suggest that the parametric and residuals bootstrap should, in general, be used to estimate the sampling variation of key measures of cluster variation and heterogeneity. The performance of the novel parametric bootstrap procedure for estimating the standard errors of predicted cluster-specific random effects tended to exceed that of the model-based estimates.
引用
收藏
页码:3175 / 3199
页数:25
相关论文
共 50 条
  • [1] Empirical Bayes estimation of random effects parameters in mixed effects logistic regression models
    Ten Have, TR
    Localio, AR
    [J]. BIOMETRICS, 1999, 55 (04) : 1022 - 1029
  • [2] Interpreting parameters in the logistic regression model with random effects
    Larsen, K
    Petersen, JH
    Budtz-Jorgensen, E
    Endahl, L
    [J]. BIOMETRICS, 2000, 56 (03) : 909 - 914
  • [3] Multilevel covariance regression with correlated random effects in the mean and variance structure
    Quintero, Adrian
    Lesaffre, Emmanuel
    [J]. BIOMETRICAL JOURNAL, 2017, 59 (05) : 1047 - 1066
  • [4] Explained Variance Measures for Multilevel Models
    LaHuis, David M.
    Hartman, Michael J.
    Hakoyama, Shotaro
    Clark, Patrick C.
    [J]. ORGANIZATIONAL RESEARCH METHODS, 2014, 17 (04) : 433 - 451
  • [5] Likelihood-Based Inference of Random Effects and Application in Logistic Regression
    Kim, Gwangsu
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2015, 28 (02) : 269 - 279
  • [6] Detecting heterogeneity in logistic regression models
    Balázs, K
    Hidegkuti, I
    De Boeck, P
    [J]. APPLIED PSYCHOLOGICAL MEASUREMENT, 2006, 30 (04) : 322 - 344
  • [7] Heterogeneity of residual variance in random regression models in the description of meat quail growth
    Bonafe, Cristina Moreira
    Torres, Robledo de Almeida
    Teixeira, Rafael Bastos
    da Silva, Felipe Gomes
    Sousa, Mariele Freitas
    Suguimoto Leite, Carla Daniela
    da Silva, Luciano Pinheiro
    Caetano, Giovani da Costa
    [J]. REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2011, 40 (10): : 2129 - 2134
  • [8] Testing Inference from Logistic Regression Models in Data with Unobserved Heterogeneity at Cluster Levels
    Ayis, Salma
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2009, 38 (06) : 1202 - 1211
  • [9] Diagnosing explainable heterogeneity of variance in random-effects models
    Zhang, F
    Weiss, RE
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (01): : 3 - 18
  • [10] Variance partitioning in multilevel logistic models that exhibit overdispersion
    Browne, WJ
    Subramanian, SV
    Jones, K
    Goldstein, H
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2005, 168 : 599 - 613